Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 12(1): 5501, 2021 09 17.
Article de Anglais | MEDLINE | ID: mdl-34535655

RÉSUMÉ

Fibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models that develop fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes. Perivascular cells with a type A pericyte marker profile also exist in the human brain and spinal cord. We uncover type A pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.


Sujet(s)
Système nerveux central/anatomopathologie , Cicatrice/anatomopathologie , Péricytes/anatomopathologie , Vieillissement/physiologie , Animaux , Astrocytes/anatomopathologie , Lésions traumatiques de l'encéphale/anatomopathologie , Encéphalopathie ischémique/anatomopathologie , Tumeurs du cerveau/anatomopathologie , Cortex cérébral/anatomopathologie , Modèles animaux de maladie humaine , Encéphalomyélite auto-immune expérimentale/anatomopathologie , Matrice extracellulaire/métabolisme , Fibroblastes/anatomopathologie , Fibrose , Glioblastome/anatomopathologie , Humains , Accident vasculaire cérébral ischémique/anatomopathologie , Souris de lignée C57BL , Souris transgéniques , Glycoprotéine MOG , Fragments peptidiques , Récepteur au PDGF bêta/métabolisme , Moelle spinale/anatomopathologie , Moelle spinale/ultrastructure , Traumatismes de la moelle épinière/anatomopathologie , Cellules stromales/anatomopathologie
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article de Anglais | MEDLINE | ID: mdl-34389674

RÉSUMÉ

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Sujet(s)
Astrocytes/physiologie , Connexine 30/métabolisme , Acide glutamique/métabolisme , Neurones/physiologie , Animaux , Différenciation cellulaire , Connexine 30/génétique , Désoxyuridine/analogues et dérivés , Désoxyuridine/pharmacologie , Phénomènes électrophysiologiques , Neurones GABAergiques/enzymologie , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes/physiologie , Interneurones/enzymologie , Protéines luminescentes , Souris , Souris transgéniques , Nitric oxide synthase type I/génétique , Nitric oxide synthase type I/métabolisme , Recombinaison génétique , Tamoxifène/pharmacologie
3.
Science ; 346(6206): 237-41, 2014 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-25301628

RÉSUMÉ

Neurogenesis is restricted in the adult mammalian brain; most neurons are neither exchanged during normal life nor replaced in pathological situations. We report that stroke elicits a latent neurogenic program in striatal astrocytes in mice. Notch1 signaling is reduced in astrocytes after stroke, and attenuated Notch1 signaling is necessary for neurogenesis by striatal astrocytes. Blocking Notch signaling triggers astrocytes in the striatum and the medial cortex to enter a neurogenic program, even in the absence of stroke, resulting in 850 ± 210 (mean ± SEM) new neurons in a mouse striatum. Thus, under Notch signaling regulation, astrocytes in the adult mouse brain parenchyma carry a latent neurogenic program that may potentially be useful for neuronal replacement strategies.


Sujet(s)
Astrocytes/physiologie , Cellules souches neurales/physiologie , Neurogenèse/physiologie , Neurones/physiologie , Récepteur Notch1/physiologie , Transduction du signal , Accident vasculaire cérébral/physiopathologie , Animaux , Astrocytes/cytologie , Corps strié/anatomopathologie , Corps strié/physiopathologie , Délétion de gène , Facteur de transcription CBF-1/génétique , Souris , Souris de lignée C57BL , Souris transgéniques , Cellules souches neurales/cytologie , Neurogenèse/génétique , Neurones/cytologie , Récepteur Notch1/génétique , Accident vasculaire cérébral/anatomopathologie
4.
Science ; 342(6158): 637-40, 2013 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-24179227

RÉSUMÉ

Central nervous system injuries are accompanied by scar formation. It has been difficult to delineate the precise role of the scar, as it is made by several different cell types, which may limit the damage but also inhibit axonal regrowth. We show that scarring by neural stem cell-derived astrocytes is required to restrict secondary enlargement of the lesion and further axonal loss after spinal cord injury. Moreover, neural stem cell progeny exerts a neurotrophic effect required for survival of neurons adjacent to the lesion. One distinct component of the glial scar, deriving from resident neural stem cells, is required for maintaining the integrity of the injured spinal cord.


Sujet(s)
Apoptose , Axones/physiologie , Cicatrice/anatomopathologie , Cellules souches neurales/physiologie , Traumatismes de la moelle épinière/anatomopathologie , Animaux , Astrocytes/physiologie , Survie cellulaire , Facteurs de transcription Forkhead/génétique , Gènes ras , Souris , Souches mutantes de souris
5.
Science ; 333(6039): 238-42, 2011 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-21737741

RÉSUMÉ

There is limited regeneration of lost tissue after central nervous system injury, and the lesion is sealed with a scar. The role of the scar, which often is referred to as the glial scar because of its abundance of astrocytes, is complex and has been discussed for more than a century. Here we show that a specific pericyte subtype gives rise to scar-forming stromal cells, which outnumber astrocytes, in the injured spinal cord. Blocking the generation of progeny by this pericyte subtype results in failure to seal the injured tissue. The formation of connective tissue is common to many injuries and pathologies, and here we demonstrate a cellular origin of fibrosis.


Sujet(s)
Cicatrice/anatomopathologie , Péricytes/anatomopathologie , Traumatismes de la moelle épinière/anatomopathologie , Moelle spinale/anatomopathologie , Animaux , Astrocytes/anatomopathologie , Astrocytes/physiologie , Vaisseaux sanguins/anatomopathologie , Numération cellulaire , Prolifération cellulaire , Fibrose , Souris , Souris transgéniques , Péricytes/physiologie , Moelle spinale/vascularisation , Cellules stromales/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...