Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 36
Filtrer
1.
PLoS Negl Trop Dis ; 17(11): e0011764, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37956210

RÉSUMÉ

BACKGROUND: Trypanosoma cruzi, the etiological agent of Chagas Disease, exhibits remarkable genetic diversity and is classified into different Discrete Typing Units (DTUs). Strain typing techniques are crucial for studying T. cruzi, because their DTUs have significant biological differences from one another. However, there is currently no methodological strategy for the direct typing of biological materials that has sufficient sensitivity, specificity, and reproducibility. The high diversity and copy number of the minicircle hypervariable regions (mHVRs) makes it a viable target for typing. METHODOLOGY/PRINCIPAL FINDINGS: Approximately 24 million reads obtained by amplicon sequencing of the mHVR were analyzed for 62 strains belonging to the six main T. cruzi DTUs. To build reference databases of mHVR diversity for each DTU and to evaluate this target as a typing tool. Strains of the same DTU shared more mHVR clusters than strains of different DTUs, and clustered together. Different identity thresholds were used to build the reference sets of the mHVR sequences (85% and 95%, respectively). The 95% set had a higher specificity and was more suited for detecting co-infections, whereas the 85% set was excellent for identifying the primary DTU of a sample. The workflow's capacity for typing samples obtained from cultures, a set of whole-genome data, under various simulated PCR settings, in the presence of co-infecting lineages and for blood samples was also assessed. CONCLUSIONS/SIGNIFICANCE: We present reference databases of mHVR sequences and an optimized typing workflow for T. cruzi including a simple online tool for deep amplicon sequencing analysis (https://ntomasini.github.io/cruzityping/). The results show that the workflow displays an equivalent resolution to that of the other typing methods. Owing to its specificity, sensitivity, relatively low cost, and simplicity, the proposed workflow could be an alternative for screening different types of samples.


Sujet(s)
Maladie de Chagas , Trypanosoma cruzi , Humains , Trypanosoma cruzi/génétique , Reproductibilité des résultats , Maladie de Chagas/diagnostic , Réaction de polymérisation en chaîne , Analyse de séquence d'ADN , Génotype , Variation génétique
2.
Mol Biol Evol ; 40(4)2023 04 04.
Article de Anglais | MEDLINE | ID: mdl-37030003

RÉSUMÉ

Kinetoplastids are a diverse group of flagellates which exhibit editing by insertion/deletion of Us in the mitochondrial mRNAs. Some mRNAs require editing to build most of their coding sequences, a process known as pan-editing. Evidence suggests that pan-editing is an ancestral feature in kinetoplastids. Here, we investigate how the transition from nonedited to pan-edited states occurred. The mitochondrial mRNAs and protein sequences from nine kinetoplastids and related groups (diplonemids, euglenids, and jakobids) were analyzed. RNA editing increased protein hydrophobicity to extreme values by introducing Us in the second codon position, despite the absence of editing preferences related to codon position. In addition, hydrophobicity was maintained by purifying selection in species that lost editing by retroposition of the fully edited mRNA. Only a few hydrophobic to hydrophilic amino acid changes were inferred for such species. In the protein secondary structure, these changes occurred spatially close to other hydrophilic residues. The analysis of coevolving sites showed that multiple changes are required together for hydrophobicity to be lost, which suggest the proteins are locked into extended hydrophobicity. Finally, an analysis of the NAD7 protein-protein interactions showed they can also influence hydrophobicity increase in the protein and where editing can occur in the mRNA. In conclusion, our results suggest that protein hydrophobicity has influenced editing site selection and how editing expanded in mRNAs. In effect, the hydrophobicity increase was entrenched by a neutral ratchet moved by a mutational pressure to introduce Us, thus helping to explain both RNA editing increase and, possibly, persistence.


Sujet(s)
Euglenida , Édition des ARN , ARN messager/composition chimique , Codon , Séquence d'acides aminés , Euglenida/génétique
3.
Infect Genet Evol ; 93: 104990, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34224899

RÉSUMÉ

Genome-based phylogeny has been proposed to be more accurate than phylogeny based in a few genes as MLST-based phylogeny. However, much is not always better. Here we analyzed 368 complete genomes corresponding to 9 bacterial species in order to address intraspecific phylogeny. The studied species were: Burkholderia pseudomallei, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus and Streptococcus pyogenes. The intra-specific phylogenies were inferred using the complete genome sequences of different strains of these species and their MLST schemes. A supermatrix approach was used to infer maximum likelihood phylogenies in both cases. The phylogenetic incongruence between the supermatrix-based genome or MLST tree and individual trees (constructed from genome fragments or MLST genes, respectively) was analyzed. In supermatrix-based trees for genomes, most branches showed a high branch support; however, a high number of branches also showed high percentage of topologically incongruent individual trees. Interestingly, genome and MLST trees showed similar levels of incongruence in the phylogeny for each bacteria specie. Both genome and MLST approaches showed that C. trachomatis and S. aureus have a tree-like evolutionary history (low levels of internal incongruence). Instead, B. pseudomallei and S. pyogenes show high levels of incongruence (network-like evolutionary story) probably caused by HGT (horizontal gene transfer). Concluding, our analysis showed that: high branch supports obtained in genome phylogenies could be an artifact probably caused by data size; MLST is valid to address intraspecific phylogenetic structure; and, each species has its own evolutionary history, which could be affected by HGT to different extents.


Sujet(s)
Bactéries/génétique , Évolution moléculaire , Génome bactérien , Génomique/méthodes , Typage par séquençage multilocus/méthodes
4.
Front Cell Infect Microbiol ; 11: 663416, 2021.
Article de Anglais | MEDLINE | ID: mdl-34136416

RÉSUMÉ

Trypanosoma cruzi, as other kinetoplastids, has a complex mechanism of editing of mitochondrial mRNAs that requires guide RNAs (gRNAs) coded in DNA minicircles in the kinetoplast. There are many variations on this mechanism among species. mRNA editing and gRNA repertoires are almost unknown in T. cruzi. Here, gRNAs were inferred based on deep-sequenced minicircle hypervariable regions (mHVRs) and editing cascades were rebuilt in strains belonging to the six main T. cruzi lineages. Inferred gRNAs were clustered according to their sequence similarity to constitute gRNA classes. Extreme diversity of gRNA classes was observed, which implied highly divergent gRNA repertoires among different lineages, even within some lineages. In addition, a variable gRNA class redundancy (i.e., different gRNA classes editing the same mRNA region) was detected among strains. Some strains had upon four times more gRNA classes than others. Such variations in redundancy affected gRNA classes of all mRNAs in a concerted way, i.e., there are correlated variations in the number of gRNAs classes editing each mRNA. Interestingly, cascades were incomplete for components of the respiratory complex I in several strains. Finally, gRNA classes of different strains may potentially edit mitochondrial mRNAs from other lineages in the same way as they edit their own mitochondrial mRNAs, which is a prerequisite for biparental inheritance of minicircle in hybrids. We propose that genetic exchange and biparental inheritance of minicircles combined with minicircle drift due to (partial) random segregation of minicircles during kDNA replication is a suitable hypothesis to explain the divergences among strains and the high levels of gRNA redundancy in some strains. In addition, our results support that the complex I may not be required in some stages in the life cycle as previously shown and that linkage (in the same minicircle) of gRNAs that edit different mRNAs may prevent gRNA class lost in such stage.


Sujet(s)
30530 , Trypanosoma brucei brucei , Trypanosoma cruzi , Séquence nucléotidique , ADN kinétoplastique , 30530/génétique , Trypanosoma brucei brucei/génétique , Trypanosoma cruzi/génétique
5.
Pathogens ; 9(9)2020 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-32899895

RÉSUMÉ

Trypanosomes are a group of parasitic flagellates with medical and veterinary importance. Despite many species having been described in this genus, little is known about many of them. Here, we report a genetic and morphological characterization of trypanosomatids isolated from wild mammals from the Argentine Chaco region. Parasites were morphologically and ultrastructurally characterized by light microscopy and transmission electron microscopy. Additionally, 18s rRNA and gGAPDH genes were sequenced and analyzed using maximum likelihood and Bayesian inference. Morphological characterization showed clear characteristics associated with the Trypanosoma genus. The genetic characterization demonstrates that the studied isolates have identical sequences and a pairwise identity of 99% with Trypanosoma lainsoni, which belongs to the clade of lizards and snakes/rodents and marsupials. To date, this species had only been found in the Amazon region. Our finding represents the second report of T. lainsoni and the first record for the Chaco region. Furthermore, we ultrastructurally described for the first time the species. Finally, the host range of T. lainsoni was expanded (Leopardus geoffroyi, Carenivora, Felidae; and Calomys sp., Rodentia, Cricetidae), showing a wide host range for this species.

6.
PLoS One ; 15(5): e0232829, 2020.
Article de Anglais | MEDLINE | ID: mdl-32379842

RÉSUMÉ

The diagnosis of American tegumentary leishmaniasis (ATL) still requires the design of more effective tools. Leishmania (Viannia) braziliensis is the causal agent of the 90% of Argentinean ATL cases. Considering the current knowledge, an ELISA based crude antigen (CA) for the diagnosis was designed. Ninety-nine subjects diagnosed as ATL, 27 as no-ATL, and 84 donors from non-ATL-endemic areas were included in this study. The current ATL diagnosis was based four techniques, dermal smear microscopic examination (parasitological test), PCR, Leishmanin skin test, and clinical records. We obtained CA extracts from promastigotes and amastigotes from macrophage cultures of different zymodemes of endemic Leishmania species circulating in the study area. Crude antigens from the 'local' main zymodeme of L. (V.) braziliensis showed the highest reactivity against anti-Leishmania antibodies compared to the other included species. The CA of amastigotes of this zymodeme was 3.4 fold more reactive than promastigotes one. Moreover, amastigote-membrane CA (MCA) were 3.6 fold more reactive than the soluble antigens. The MCA-ELISA reached a sensitivity and specificity of 98% (CI = 94.7%-100%) and 63.6% (53.9-73.1), respectively. When anti-Trypanosoma cruzi reactive sera were excluded, the specificity reached 98.4% (94.4-100), while the sensitivity was similar, with a positive predictive value (PV) of 98.6% (94.6-100) and negative PV of 96.3% (91.6-100). The performance of the MCA-ELISA results strongly contribute to the final diagnostic decision, since a non-reactive serological result almost discards the suspected ATL, because of its high negative PV. The developed MCA-ELISA showed a high diagnostic performance, which makes it a good candidate for ATL diagnosis, for seroprevalence studies, or for monitoring treatments efficacy.


Sujet(s)
Anticorps antiprotozoaires/sang , Antigènes de protozoaire/immunologie , Membrane cellulaire/immunologie , Test ELISA/méthodes , Leishmania brasiliensis/immunologie , Leishmaniose cutanée/diagnostic , Affinité des anticorps , Spécificité des anticorps , Argentine/épidémiologie , Donneurs de sang , Maladies endémiques , Humains , Leishmania brasiliensis/croissance et développement , Leishmaniose cutanée/sang , Leishmaniose cutanée/épidémiologie , Leishmaniose cutanée/parasitologie , Leishmaniose cutanéomuqueuse/sang , Leishmaniose cutanéomuqueuse/diagnostic , Leishmaniose cutanéomuqueuse/parasitologie , Valeur prédictive des tests , Sensibilité et spécificité , Études séroépidémiologiques , Trypanosoma cruzi/immunologie
7.
PLoS Negl Trop Dis ; 14(1): e0007770, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-32004318

RÉSUMÉ

BACKGROUND: Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. METHODOLOGY/PRINCIPAL FINDINGS: In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones had almost the same ploidy and the DNA content was similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared 66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast, the putative parental stocks shared less than 30% of the mHVR clusters between them. CONCLUSIONS/SIGNIFICANCE: The results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and explaining the relationships between these three clones are discussed.


Sujet(s)
ADN des protozoaires/génétique , Hybridation génétique , Trypanosoma cruzi/classification , Trypanosoma cruzi/génétique , ADN kinétoplastique/génétique , Gènes de protozoaire , Séquençage nucléotidique à haut débit , Ploïdies , Analyse de séquence d'ADN
8.
Am J Trop Med Hyg ; 101(5): 1135-1138, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31516110

RÉSUMÉ

The discovery and characterization of novel parasite antigens to improve the diagnosis of Trypanosoma cruzi by serological methods and for accurate and rapid follow-up of treatment efficiency are still needed. TcTASV is a T. cruzi-specific multigene family, whose products are expressed on the parasite stages present in the vertebrate host. In a previous work, a mix of antigens from subfamilies TcTASV-A and TcTASV-C (Mix A + C) was sensitive and specific to identify dogs with active infection of high epidemiological relevance. Here, TcTASV-A and TcTASV-C were assayed separately as well as together (Mix A + C) in an ELISA format on human samples. The Mix A + C presented moderate sensitivity (78%) but high diagnostic accuracy with a 100% of specificity, evaluated on healthy, leishmaniasic, and Strongyloides stercoralis infected patients. Moreover, antibody levels of pediatric patients showed-2 years posttreatment-diminished reactivity against the Mix A + C (P < 0.0001), pointing TcTASV antigens as promising tools for treatment follow-up.


Sujet(s)
Antigènes de protozoaire/sang , Antiprotozoaires/usage thérapeutique , Maladie de Chagas/sang , Maladie de Chagas/traitement médicamenteux , Trypanosoma cruzi/immunologie , Anticorps antiprotozoaires/immunologie , Marqueurs biologiques/sang , Enfant , Test ELISA/méthodes , Humains , Sensibilité et spécificité
9.
PLoS Negl Trop Dis ; 13(6): e0007536, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-31247047

RÉSUMÉ

BACKGROUND: Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicircle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed hybridization only between isolates belonging to the same genetic group. Nowadays there is no methodologic approach with a good sensibility, specificity and reproducibility for direct typing on biological samples. Due to its high copy number and apparently high diversity, mHVR becomes a good target for typing. METHODOLOGY/PRINCIPAL FINDINGS: Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was variable among DTUs and even within a DTU. However, strains of the same DTU shared more mHVR clusters than strains of different DTUs and clustered together. In addition, hybrid DTUs (TcV and TcVI) shared similar percentages (1.9-3.4%) of mHVR clusters with their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth (20,000-40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed strains. Finally, the method revealed good correlation in cluster identity and abundance between different replications of the experiment (r = 0.999). CONCLUSIONS/SIGNIFICANCE: Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The mHVR amplicon sequencing workflow described here is a reproducible technique, that allows multiplexed analysis of hundreds of strains and results promissory for direct typing on biological samples in a future. In addition, such approach may help to gain knowledge on the mechanisms of the minicircle evolution and phylogenetic relationships among strains.


Sujet(s)
Maladie de Chagas/parasitologie , ADN kinétoplastique/génétique , Variation génétique , Trypanosoma cruzi/classification , Trypanosoma cruzi/génétique , Techniques de génotypage , Humains , Analyse de séquence d'ADN
10.
BMC Infect Dis ; 17(1): 732, 2017 11 25.
Article de Anglais | MEDLINE | ID: mdl-29178839

RÉSUMÉ

BACKGROUND: Previous studies showed that a naturally attenuated strain from Trypanosoma cruzi triggers an immune response mainly related to a Th2-type profile. Albeit this, a strong protection against virulent challenge was obtained after priming mice with this attenuated strain. However, this protection is not enough to completely clear parasites from the host. In T. cruzi infection, early Interferon-gamma (IFN-γ) is critical to lead type 1 responses able to control intracellular parasites. Therefore we evaluated whether the co-administration of a plasmid encoding murine IFN-γ could modify the immune response induced by infection with attenuated parasites and improve protection against further infections. METHODS: C57BL/6J mice were infected intraperitoneally with three doses of live attenuated parasites in combination with plasmid pVXVR-mIFN-γ. Before each infection dose, sera samples were collected for parasite specific antibodies determination and cytokine quantification. To evaluate the recall response to T. cruzi, mice were challenged with virulent parasites 30 days after the last dose and parasite load in peripheral blood and heart was evaluated. RESULTS: As determined by ELISA, significantly increase in T. cruzi specific antibodies response was detected in the group in which pVXVR-mIFN-γ was incorporated, with a higher predominance of IgG2a subtype in comparison to the group of mice only inoculated with attenuated parasites. At our limit of detection, serum levels of IFN-γ were not detected, however a slight decrease in IL-10 concentrations was observed in groups in which pVXVR-mIFN-γ was supplemented. To analyze if the administration of pVXVR-mIFN-γ has any beneficial effect in protection against subsequent infections, all experimental groups were submitted to a lethal challenge with virulent bloodstream trypomastigotes. Similar levels of challenge parasites were detected in peripheral blood and heart of mice primed with attenuated parasites alone or combined with plasmid DNA. Expansion of IgG antibodies was not significant in TCC+ pVXVR-mIFN-γ; however, the overall tendency to sustain a Th2 profile was maintained. CONCLUSIONS: Overall, these results suggest that administration of plasmid pVXVR-mIFN-γ could have beneficial effects on host specific antibody production in response to T. cruzi attenuated infection; however, this outcome is not reflected in an improved protection against further virulent infections.


Sujet(s)
Maladie de Chagas/immunologie , Interféron gamma/génétique , Plasmides/pharmacologie , Trypanosoma cruzi/immunologie , Animaux , Anticorps antiprotozoaires/sang , Maladie de Chagas/mortalité , Cytokines/sang , Test ELISA , Coeur/parasitologie , Interactions hôte-parasite/immunologie , Immunoglobuline G/sang , Interféron gamma/sang , Mâle , Souris , Souris de lignée C57BL , Trypanosoma cruzi/pathogénicité , Vaccins atténués/immunologie
11.
PLoS Comput Biol ; 13(5): e1005532, 2017 05.
Article de Anglais | MEDLINE | ID: mdl-28481887

RÉSUMÉ

People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008-0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1-3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.


Sujet(s)
Maladie de Chagas , Co-infection , Modèles biologiques , Trypanosoma cruzi , Immunité acquise , Algorithmes , Animaux , Maladie de Chagas/épidémiologie , Maladie de Chagas/immunologie , Maladie de Chagas/parasitologie , Maladie de Chagas/transmission , Co-infection/épidémiologie , Co-infection/immunologie , Co-infection/parasitologie , Co-infection/transmission , Biologie informatique , Chiens , Interactions hôte-pathogène/immunologie , Humains , Vecteurs insectes
12.
Biomed Res Int ; 2016: 6456031, 2016.
Article de Anglais | MEDLINE | ID: mdl-27777950

RÉSUMÉ

Background. Endemic areas of tegumentary leishmaniasis (TL) in Salta, Argentina, present some overlap zones with the geographical distribution of Chagas disease, with mixed infection cases being often detected. Objectives. The purpose of this study was to determine the magnitude of Leishmania sp. infection and potential associated risk factors, the serologic prevalence of T. cruzi, and the presence of T. cruzi-Leishmania sp. mixed infection in a region of the northwest of Argentina. Methods. Cross-sectional studies were conducted to detect TL prevalence and T. cruzi seroprevalence. A case-control study was conducted to examine leishmaniasis risk factors. Results. Prevalence of TL was 0.17%, seroprevalence of T. cruzi infection was 9.73%, and mixed infection proportion-within the leishmaniasic patients group-was 16.67%. The risk factors associated with TL transmission were sex, age, exposure to bites at work, staying outdoors more than 10 hours/day, bathing in the river, and living with people who had lesions or were infected during the study. Discussion. The endemic pattern of TL seems to involve exposure of patients to vectors in wild as well as peridomestic environment. Cases of T. cruzi infection are apparently due to migration. Therefore, a careful epidemiological surveillance is necessary due to the contraindication of antimonial administration to chagasic patients.


Sujet(s)
Co-infection/parasitologie , Leishmaniose/épidémiologie , Trypanosoma cruzi , Trypanosomiase/épidémiologie , Adolescent , Adulte , Sujet âgé , Argentine/épidémiologie , Études cas-témoins , Maladie de Chagas/épidémiologie , Enfant , Co-infection/épidémiologie , Études transversales , Test ELISA , Femelle , Géographie , Humains , Mâle , Adulte d'âge moyen , Prévalence , Forêt pluviale , Facteurs de risque , Études séroépidémiologiques , Climat tropical , Jeune adulte
13.
J Mol Diagn ; 17(5): 605-15, 2015 Sep.
Article de Anglais | MEDLINE | ID: mdl-26320872

RÉSUMÉ

An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease.


Sujet(s)
Maladie de Chagas/sang , ADN des protozoaires/analyse , Réaction de polymérisation en chaine en temps réel/méthodes , Trypanosoma cruzi/génétique , Maladie de Chagas/diagnostic , Maladie de Chagas/génétique , Maladie de Chagas/parasitologie , ADN des protozoaires/isolement et purification , Humains , Coopération internationale , Évaluation de la compétence des laboratoires , Typage moléculaire , Parasitémie/sang , Parasitémie/diagnostic , Parasitémie/génétique , Sensibilité et spécificité , Trypanosoma cruzi/isolement et purification
14.
Mem. Inst. Oswaldo Cruz ; 110(3): 403-413, 05/2015. graf
Article de Anglais | LILACS | ID: lil-745980

RÉSUMÉ

Several different models of Trypanosoma cruzi evolution have been proposed. These models suggest that scarce events of genetic exchange occurred during the evolutionary history of this parasite. In addition, the debate has focused on the existence of one or two hybridisation events during the evolution of T. cruzi lineages. Here, we reviewed the literature and analysed available sequence data to clarify the phylogenetic relationships among these different lineages. We observed that TcI, TcIII and TcIV form a monophyletic group and that TcIII and TcIV are not, as previously suggested, TcI-TcII hybrids. Particularly, TcI and TcIII are sister groups that diverged around the same time that a widely distributed TcIV split into two clades (TcIVS and TcIVN). In addition, we collected evidence that TcIII received TcIVS kDNA by introgression on several occasions. Different demographic hypotheses (surfing and asymmetrical introgression) may explain the origin and expansion of the TcIII group. Considering these hypotheses, genetic exchange should have been relatively frequent between TcIII and TcIVS in the geographic area in which their distributions overlapped. In addition, our results support the hypothesis that two independent hybridisation events gave rise to TcV and TcVI. Consequently, TcIVS kDNA was first transferred to TcIII and later to TcV and TcVI in TcII/TcIII hybridisation events.


Sujet(s)
Évolution biologique , Hybridation génétique/génétique , Trypanosoma cruzi/génétique , ADN des protozoaires/génétique , Variation génétique , Génotype , Mitochondries/génétique , Phylogenèse , Analyse de séquence d'ADN , Trypanosoma cruzi/classification
15.
Mem Inst Oswaldo Cruz ; 110(3): 403-13, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25807469

RÉSUMÉ

Several different models of Trypanosoma cruzi evolution have been proposed. These models suggest that scarce events of genetic exchange occurred during the evolutionary history of this parasite. In addition, the debate has focused on the existence of one or two hybridisation events during the evolution of T. cruzi lineages. Here, we reviewed the literature and analysed available sequence data to clarify the phylogenetic relationships among these different lineages. We observed that TcI, TcIII and TcIV form a monophyletic group and that TcIII and TcIV are not, as previously suggested, TcI-TcII hybrids. Particularly, TcI and TcIII are sister groups that diverged around the same time that a widely distributed TcIV split into two clades (TcIVS and TcIVN). In addition, we collected evidence that TcIII received TcIVS kDNA by introgression on several occasions. Different demographic hypotheses (surfing and asymmetrical introgression) may explain the origin and expansion of the TcIII group. Considering these hypotheses, genetic exchange should have been relatively frequent between TcIII and TcIVS in the geographic area in which their distributions overlapped. In addition, our results support the hypothesis that two independent hybridisation events gave rise to TcV and TcVI. Consequently, TcIVS kDNA was first transferred to TcIII and later to TcV and TcVI in TcII/TcIII hybridisation events.


Sujet(s)
Évolution biologique , Hybridation génétique/génétique , Trypanosoma cruzi/génétique , ADN des protozoaires/génétique , Variation génétique , Génotype , Mitochondries/génétique , Phylogenèse , Analyse de séquence d'ADN , Trypanosoma cruzi/classification
16.
Infect Genet Evol ; 29: 53-9, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25445658

RÉSUMÉ

The transmission cycles of Trypanosoma cruzi in the Gran Chaco are complex networks involving domestic and wild components, whose interrelationships are not well understood. Knowing the circuit of transmission of the different Discrete Typing Units (DTUs) of T. cruzi in the complex environment of the Chaco region is relevant to understanding how the different components (reservoirs, vectors, ecotopes) interact. In the present study we identified the DTUs infecting humans and dogs in two rural areas of the Gran Chaco in Argentina, using molecular methods which avoid parasite culture. Blood samples of humans and dogs were typified by PCR-DNA blotting and hybridization assays with five specific DNA probes (TcI, TcII, TcIII, TcV and TcVI). PCR analyses were performed on seropositive human and dog samples and showed the presence of T. cruzi DNA in 41.7% (98/235) and 53% (35/66) samples, respectively. The identification of infective DTUs was determined in 83.6% (82/98) and 91.4% (32/35) in human and dog samples, respectively. Single infections (36.7% - 36/98) and a previously not detected high proportion of mixed infections (47.9% - 47/98) were found. In a 15.3% (15/98) of samples the infecting DTU was not identified. Among the single infections TcV was the most prevalent DTU (30.6% - 30/98) in human samples; while TcVI (42.8% - 15/35) showed the highest prevalence in dog samples. TcV/TcVI was the most prevalent mixed infection in humans (32.6% - 32/98); and TcI/TcVI (14.3% - 5/35) in dogs. Significant associations between TcV with humans and TcVI with dogs were detected. For the first time, the presence of TcIII was detected in humans from this region. The occurrence of one human infected whit TcIII (a principally wild DTU) could be suggested the emergence of this, in domestic cycles in the Gran Chaco.


Sujet(s)
Maladie de Chagas/parasitologie , Maladie de Chagas/médecine vétérinaire , Maladies des chiens/sang , Trypanosoma cruzi/classification , Trypanosoma cruzi/génétique , Adolescent , Adulte , Animaux , Argentine , Maladie de Chagas/sang , Maladie de Chagas/génétique , Enfant , Co-infection , Études transversales , ADN des protozoaires/génétique , Maladies des chiens/parasitologie , Chiens , Génotype , Humains , Mâle , Adulte d'âge moyen , Population rurale , Trypanosoma cruzi/isolement et purification , Jeune adulte
17.
Infect Genet Evol ; 27: 348-54, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25111612

RÉSUMÉ

Trypanosoma cruzi has been historically classified as a species with preponderant clonal evolution (PCE). However, with the advent of highly polymorphic markers and studies at geographically reduced scales, the PCE in T. cruzi was challenged. In fact, some studies have suggested that recombination in T. cruzi lineage I (TcI) is much more frequent than previously believed. Further analyses of TcI populations from different geographical regions of Latin America are needed to examine this hypothesis. In the present study, we contribute to this topic by analyzing the population structure of TcI from a restricted geographical area in the Chaco region, Argentina. We analyzed TcI isolates from different hosts and vectors using a Multilocus Sequence Typing (MLST) approach. These isolates were previously characterized by sequencing the spliced leader intergenic region (SL-IR). Low levels of incongruence and well-supported clusters for MLST dataset were obtained from the analyses. Moreover, high linkage disequilibrium was found and five repeated and overrepresented genotypes were detected. In addition, a good correspondence between SL-IR and MLST was observed which is expected under PCE. However, recombination is not ruled out because five out of 28 pairs of loci were incompatible with strict clonality and one possible genetic exchange event was detected. Overall, our results represent evidence of PCE in TcI from the study area. Finally, considering our findings we discuss the scenario for the genetic structure of TcI.


Sujet(s)
Maladie de Chagas/parasitologie , Évolution moléculaire , Variation génétique , Trypanosoma cruzi/classification , Trypanosoma cruzi/génétique , Allèles , Argentine , ADN intergénique , Locus génétiques , Génotype , Humains , Déséquilibre de liaison , Données de séquences moléculaires , Typage par séquençage multilocus , Phylogenèse , Polymorphisme génétique , ARN de tête épissé
18.
PLoS Negl Trop Dis ; 8(8): e3117, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-25167160

RÉSUMÉ

Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared.


Sujet(s)
Typage par séquençage multilocus/méthodes , Parasitologie/méthodes , Trypanosoma cruzi/génétique , Génotype
19.
PLoS One ; 9(7): e103131, 2014.
Article de Anglais | MEDLINE | ID: mdl-25054834

RÉSUMÉ

The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this "residual" genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic structure in these organisms that should be considered.


Sujet(s)
Bactéries/génétique , Infections bactériennes/microbiologie , Gènes bactériens , Variation génétique , Génotype , Humains , Typage par séquençage multilocus , Phylogenèse , Recombinaison génétique
20.
PLoS Negl Trop Dis ; 8(5): e2892, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24852444

RÉSUMÉ

BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages.


Sujet(s)
Antigènes de protozoaire/immunologie , Maladie de Chagas/immunologie , Maladie de Chagas/parasitologie , Épitopes/immunologie , Peptides/immunologie , Trypanosoma cruzi/classification , Algorithmes , Séquence d'acides aminés , Animaux , Anticorps antiprotozoaires/sang , Antigènes de protozoaire/composition chimique , Biologie informatique , Épitopes/composition chimique , Humains , Souris , Données de séquences moléculaires , Peptides/composition chimique , Sérotypie/méthodes , Amérique du Sud , Triatoma/parasitologie , Trypanosoma cruzi/immunologie , Glycoprotéines de surface variables du trypanosome/composition chimique , Glycoprotéines de surface variables du trypanosome/immunologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE