Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Neurosci Lett ; 836: 137874, 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-38857696

RÉSUMÉ

Clusterin is a secreted glycoprotein that participates in multiple physiological processes through its chaperon function. In Alzheimer's disease, the brain functions under an increased oxidative stress condition that causes an elevation of protein oxidation, resulting in enhanced pathology. Accordingly, it is important to determine the type of human brain cells that are mostly prone to methionine oxidation in Alzheimer's disease and specifically monitoring the methionine-oxidation levels of clusterin in human and mice brains and its effect on clusterin's function. We analyzed the level of methionine sulfoxide (MetO)-clusterin in these brains, using a combination of immunoprecipitation and Western-blott analyses. Also, we determine the effect of methionine oxidation on clusterin ability to bind beta-amyloid, in vitro, using calorimetric assay. Our results show that human neurons and astrocytes of Alzheimer's disease brains are mostly affected by methionine oxidation. Moreover, MetO-clusterin levels are elevated in postmortem Alzheimer's disease human and mouse brains in comparison to controls. Finally, oxidation of methionine residues of purified clusterin reduced its binding efficiency to beta-amyloid. In conclusion, we suggest that methionine oxidation of brain-clusterin is enhanced in Alzheimer's disease and that this oxidation compromises its chaperon function, leading to exacerbation of beta-amyloid's toxicity in Alzheimer's disease.


Sujet(s)
Maladie d'Alzheimer , Peptides bêta-amyloïdes , Astrocytes , Encéphale , Clusterine , Méthionine , Oxydoréduction , Sujet âgé , Animaux , Humains , Mâle , Souris , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Astrocytes/métabolisme , Encéphale/métabolisme , Clusterine/métabolisme , Méthionine/métabolisme , Méthionine/analogues et dérivés , Neurones/métabolisme , Liaison aux protéines
2.
Cell Rep ; 42(1): 111946, 2023 01 31.
Article de Anglais | MEDLINE | ID: mdl-36640331

RÉSUMÉ

Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.


Sujet(s)
Maladie d'Alzheimer , Neurones , Souris , Animaux , Neurones/métabolisme , Dendrites , Maladie d'Alzheimer/métabolisme , Homéostasie/physiologie , , Protéines amyloïdogènes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE