Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Appl Crystallogr ; 52(Pt 3): 683-689, 2019 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-31236098

RÉSUMÉ

GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene-quinone crystallites on a single-crystalline Au(111) surface.

2.
ACS Appl Mater Interfaces ; 6(16): 13413-21, 2014 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-25083814

RÉSUMÉ

A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

3.
Chemphyschem ; 14(11): 2554-9, 2013 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-23712939

RÉSUMÉ

The order in molecular monolayers is a crucial aspect for their technological application. However, the preparation of defined monolayers by spin-coating is a challenge, since the involved processes are far from thermodynamic equilibrium. In the work reported herein, the dynamic formation of dioctyl-benzothienobenzothiophene monolayers is explored as a function of temperature by using X-ray scattering techniques and atomic force microscopy. Starting with a disordered monolayer after the spin-coating process, post-deposition self-reassembly at room temperature transforms the initially amorphous layer into a well-ordered bilayer structure with a molecular herringbone packing, whereas at elevated temperature the formation of crystalline islands occurs. At the temperature of the liquid-crystalline crystal-smectic transition, rewetting of the surface follows resulting in a complete homogeneous monolayer. By subsequent controlled cooling to room temperature, cooling-rate-dependent kinetics is observed; at rapid cooling, a stable monolayer is preserved at room temperature, whereas slow cooling causes bilayer structures. Increasing the understanding and control of monolayer formation is of high relevance for achieving ordered functional monolayers with defined two-dimensional packing, for future applications in the field of organic electronics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE