Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chem Sci ; 15(12): 4458-4465, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38516072

RÉSUMÉ

The palladium-mediated uncaging reaction of allene substrates remains a promising yet often overlooked strategy in the realm of bioorthogonal chemistry. This method exhibits high kinetic rates, rivaling those of the widely employed allylic and propargylic protecting groups. In this study, we investigate into the mechanistic aspects of the C-O bond-cleavage deallenylation reaction, examining how chloride levels influence the kinetics when triggered by Pd(ii) complexes. Focusing on the deallenylation of 1,2-allenyl protected 4-methylumbelliferone promoted by Allyl2Pd2Cl2, our findings reveal that reaction rates are higher in environments with lower chloride concentrations, mirroring intracellular conditions, compared to elevated chloride concentrations typical of extracellular conditions. Through kinetic and spectroscopic experiments, combined with DFT calculations, we uncover a detailed mechanism that identifies AllylPd(H2O)2 as the predominant active species. These insights provide the basis for the design of π-allylpalladium catalysts suited for selective uncaging within specific cellular environments, potentially enhancing targeted therapeutic applications.

2.
J Am Chem Soc ; 145(19): 10790-10799, 2023 05 17.
Article de Anglais | MEDLINE | ID: mdl-37133984

RÉSUMÉ

The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated ß-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of ß-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.


Sujet(s)
Naphtoquinones , Tumeurs , Promédicaments , Animaux , Humains , Promédicaments/pharmacologie , Promédicaments/composition chimique , Palladium/composition chimique , Danio zébré
3.
Angew Chem Int Ed Engl ; 61(8): e202113519, 2022 02 14.
Article de Anglais | MEDLINE | ID: mdl-34739737

RÉSUMÉ

Owing to their bioorthogonality, transition metals have become very popular in the development of biocompatible bond-cleavage reactions. However, many approaches require design and synthesis of complex ligands or formulation of nanoparticles which often perform poorly in living cells. This work reports on a method for the generation of an active palladium species that triggers bond-cleaving reactions inside living cells. We utilized the water-soluble Na2 PdCl4 as a simple source of PdII which can be intracellularly reduced by sodium ascorbate to the active Pd0 species. Once generated, Pd0 triggers the cleavage of allyl ether and carbamate caging groups leading to the release of biologically active molecules. These findings do not only expand the toolbox of available bioorthogonal dissociative reactions but also provide an additional strategy for controlling the reactivity of Pd species involved in Pd-mediated bioorthogonal reactions.


Sujet(s)
Acide ascorbique/composition chimique , Matériaux biocompatibles/composition chimique , Palladium/composition chimique , Structure moléculaire , Nanoparticules/composition chimique
4.
Molecules ; 26(15)2021 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-34361597

RÉSUMÉ

Herein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the electronic properties of the substituents determine the charge delocalization and the partial charge on selenium, which correlate with the catalytic performances. The amino group concurs in the stabilization of the selenolate intermediate through a hydrogen bond with the selenium.

5.
Chem Soc Rev ; 49(21): 7710-7729, 2020 Nov 07.
Article de Anglais | MEDLINE | ID: mdl-33026001

RÉSUMÉ

Cleavage of C-O and C-N bonds mediated by transition metals is a promising bioorthogonal approach to rescue the activity of caged molecules, such as proteins and cytotoxic drugs, under biological conditions. However, the precise mechanism of such uncaging reactions remains elusive. This review provides mechanistic insights into metal-mediated bond-cleavage reactions, with the goals of understanding the main factors that influence the reaction and aiding the rational development of new caging groups/catalysts for chemical biology and drug-delivery applications.


Sujet(s)
Composés chimiques organiques/composition chimique , Éléments de transition/composition chimique , Structure moléculaire
6.
J Am Chem Soc ; 142(24): 10869-10880, 2020 06 17.
Article de Anglais | MEDLINE | ID: mdl-32456416

RÉSUMÉ

The ability to create ways to control drug activation at specific tissues while sparing healthy tissues remains a major challenge. The administration of exogenous target-specific triggers offers the potential for traceless release of active drugs on tumor sites from antibody-drug conjugates (ADCs) and caged prodrugs. We have developed a metal-mediated bond-cleavage reaction that uses platinum complexes [K2PtCl4 or Cisplatin (CisPt)] for drug activation. Key to the success of the reaction is a water-promoted activation process that triggers the reactivity of the platinum complexes. Under these conditions, the decaging of pentynoyl tertiary amides and N-propargyls occurs rapidly in aqueous systems. In cells, the protected analogues of cytotoxic drugs 5-fluorouracil (5-FU) and monomethyl auristatin E (MMAE) are partially activated by nontoxic amounts of platinum salts. Additionally, a noninternalizing ADC built with a pentynoyl traceless linker that features a tertiary amide protected MMAE was also decaged in the presence of platinum salts for extracellular drug release in cancer cells. Finally, CisPt-mediated prodrug activation of a propargyl derivative of 5-FU was shown in a colorectal zebrafish xenograft model that led to significant reductions in tumor size. Overall, our results reveal a new metal-based cleavable reaction that expands the application of platinum complexes beyond those in catalysis and cancer therapy.


Sujet(s)
Amides/composition chimique , Antinéoplasiques/pharmacologie , Cisplatine/pharmacologie , Morphinanes/composition chimique , Platine/composition chimique , Animaux , Antinéoplasiques/composition chimique , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Cisplatine/composition chimique , Libération de médicament , Tests de criblage d'agents antitumoraux , Humains , Structure moléculaire , Tumeurs expérimentales/traitement médicamenteux , Tumeurs expérimentales/anatomopathologie , Danio zébré
7.
Nanoscale ; 12(2): 1171-1179, 2020 Jan 14.
Article de Anglais | MEDLINE | ID: mdl-31850429

RÉSUMÉ

Core-shell PdCu nanoparticles with different metal proportions were synthesized using a one-pot methodology and characterized by STEM, HRTEM, XANES and EXAFS analysis. The bimetallic nanoparticles were applied as catalysts in the Sonogashira cross-coupling reaction to investigate the mode of action of the PdCu in the reaction. The copper content directly influenced the generation of the cross-coupling product, shaping the performance of the catalyst. A quasi-homogeneous reaction pathway was evidenced by kinetics and poisoning experiments as well as XAS, HRTEM and HRMS analysis. These findings help to elucidate the mode of action of the PdCu nanocatalysts in the, as yet, unrevealed Sonogashira mechanism and the potential development of new nanocatalysts.

8.
J Org Chem ; 84(9): 5118-5128, 2019 05 03.
Article de Anglais | MEDLINE | ID: mdl-30957505

RÉSUMÉ

A water-soluble and charge-tagged palladium complex (PdMAI) was found to function inside breast cancer live cells of the MCF-7 lineage as an efficient catalyst for cross-coupling reaction. PdMAI, bearing two ionophilic task-specific ionic liquids as ligands, efficiently catalyzed both in cellulo Suzuki and Buchwald-Hartwig amination reactions. For the first time, therefore, the Buchwald-Hartwig amination is described to occur inside the highly complex cellular environment. The 2,1,3-benzothiadiazole (BTD) core was used as the base for the syntheses, and two π-extended fluorescent derivatives (BTD-2APy) and (BTD-1AN), which were found to emit in the green and red channels, had impressive mitochondrial affinity. These chromophores allowed for selective mitochondrial imaging and tracking.


Sujet(s)
Complexes de coordination/composition chimique , Liquides ioniques/composition chimique , Mitochondries/métabolisme , Palladium/composition chimique , Thiadiazoles/composition chimique , Catalyse , Complexes de coordination/synthèse chimique , Humains , Ligands , Cellules MCF-7 , Solubilité
9.
Inorg Chem ; 58(7): 4141-4151, 2019 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-30868870

RÉSUMÉ

An easy-to-prepare ruthenium catalyst obtained from ruthenium(III) trichloride in water demonstrates efficient performances in the oxidation of several cycloalkanes with high selectivity toward the ketone. In this work, several physicochemical techniques were used to demonstrate the real nature of the ruthenium salt still unknown in water and to define the active species for this Csp3-H bond functionalization. From transmission electron microscopy analyses corroborated by SAXS analyses, spherical nanoobjects were observed with an average diameter of 1.75 nm, thus being in favor of the formation of reduced species. However, further investigations, based on X-ray scattering and absorption analyses, showed no evidence of the presence of a metallic Ru-Ru bond, proof of zerovalent nanoparticles, but the existence of Ru-O and Ru-Cl bonds, and thus the formation of a water-soluble complex. The EXAFS (extended X-ray absorption fine structure) spectra revealed the presence of an oxygen-bridged diruthenium complex [Ru(OH) xCl3- x]2(µ-O) with a high oxidation state in agreement with catalytic results. This study constitutes a significant advance to determine the true nature of the RuCl3·3H2O salt in water and proves once again the invasive nature of the electron beam in microscopy experiments, routinely used in nanochemistry.

10.
RSC Adv ; 9(51): 30007-30011, 2019 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-35531525

RÉSUMÉ

The development of nanoprobes for selective detection of metal ions in solution has attracted great attention due to their impact on living organisms. As a contribution to this field, this paper reports the synthesis of silver nanoparticles modified with rutin in the presence of ascorbic acid and their successful use as a chromogenic probe for the selective detection of Fe3+ in aqueous solution. Limits of detection and quantification were found to be 17 nmol L-1 and 56 nmol L-1, respectively. The sensing ability is proposed to proceed via an iron-induced nanoparticle growth/aggregation mechanism. A practical approach using image analysis for quantification of Fe3+ is also described.

11.
J Phys Chem A ; 121(39): 7414-7423, 2017 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-28902515

RÉSUMÉ

The acidity of organic compounds is highly relevant to understanding several biological processes. Although the relevance and challenges in estimating pKa values of organic acids is recognized by several reported works in the literature, there is a lack in determining the acidity of amides. This paper presents an experimental/theoretical combined investigation on the acid dissociation of the compound 6,7-dinitro-1,4-dihydroquinoxaline-2,3-dione (DNQX), a well-established antagonist of ionotropic glutamate receptor GluA2. DNQX was synthesized, and its two acidic constants were determined by UV-vis spectroscopy. The experimental pKa of 6.99 ± 0.02 and 10.57 ± 0.01 indicate that DNQX mainly exists as an anionic form (DNQXA1) in physiological media, which was also confirmed by 1H NMR analysis. Five computational methods were applied for estimating the theoretical pKa values of DNQX, including B3LYP, M06-2X, ωB97XD, and CBS-QB3, which were able to provide reasonable estimates for pKa associated with DNQX. Molecular dynamics studies have demonstrated that DNQXA1' binds more effectively to the pocket of the GluA2 than neutral DNQX, and this fact is coherent to the interactions between amidic oxygens and Arg845 being the main interactions of this host-guest system. Moreover, interaction of GluA2 with endogenous glutamate is stronger than that with DNQXA1, which is in agreement with literature. To the best of our knowledge, we report herein an unprecedented approach involving acidity of the antagonist DNQX, as well as the possible implications in binding to GluA2.

12.
Dalton Trans ; 46(15): 5082-5090, 2017 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-28362451

RÉSUMÉ

A series of Ni(0) nanocatalysts was prepared from a Ni(COD)2 complex in the presence of different stabilizers (hexadecylamine, polyvinylpyrrolidone (PVP), PVP/triphenylphosphine, octanoic acid and stearic acid) for their evaluation in the selective hydrogenation reaction of α,ß-unsaturated carbonyl compounds by H2 under mild reaction conditions, i.e., low H2 pressure, temperature and catalyst loading. All nanocatalysts were active in reducing only the C[double bond, length as m-dash]C bond and this chemoselectivity was attributed to the reduced nature of the Ni-NPs surface. Moreover, the hydrogenation reaction rate appeared to be sensitive to ligand type, with the carboxylic acid-stabilized systems showing the best performances. A full kinetic investigation into the t-chalcone chemoselective reduction of the C[double bond, length as m-dash]C bond, with the best catalyst (Ni-octanoic acid) revealed that the rate-determining step is the hydrogenation of the adsorbed substrate on the NPs surface, following a Horiuti-Polanyi type of mechanism. Regarding sustainable chemistry concerns, the best catalyst could be reused up to 10 times without significant loss of activity.

13.
Langmuir ; 30(21): 6011-20, 2014 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-24850447

RÉSUMÉ

Oligosaccharide-based amphiphiles were readily prepared by click chemistry from ω-azido-hexanoic or dodecanoic acids with propargyl-functionalized maltoheptaose or xyloglucanoligosaccharides. These amphiphilic compounds were used as capping/stabilizer agents in order to obtain highly stable catalytic silver glyconanoparticles (Ag-GNPs) through the in situ reduction of silver nitrate with NaBH4. With a view to long-term storage, the stabilization was optimized using a multivariate approach, and the nanoparticles were characterized by UV-vis, TEM, SAXS, and DLS. In order to explore the functionality of the Ag-GNPs in catalysis, a full kinetic analysis of the reduction of p-nitrophenol by NaBH4 in water and in water/ethanol mixtures was performed under semi-heterogeneous and quasi-homogeneous conditions. A pseudomonomolecular surface reaction was performed, and the kinetic data obtained were treated according to the Langmuir model. The Ag-GNPs were very active, and both substrates adsorbed onto the surface of the nanoparticles. For comparison purposes, the reaction was also performed in the presence of silver-sodium dodecanoate nanoparticles, which showed catalytic activity similar to that of the glyconanoparticles, supporting the choice of the carboxyl group as the stabilizing agent, although it provided much lower temporal stability. Finally, by combining kinetic and water/ethanol surface tension data it was possible to observe the effect of the addition of the less polar solvent (ethanol) to the reaction medium.


Sujet(s)
Glucides/composition chimique , Nanoparticules/composition chimique , Nanotechnologie/méthodes , Argent/composition chimique , Adsorption , Catalyse , Chromatographie sur couche mince , Éthanol/composition chimique , Microscopie électronique à transmission , Nitrophénols/composition chimique , Oligosaccharides/composition chimique , Diffusion de rayonnements , Composés de l'argent/composition chimique , Sodium/composition chimique , Propriétés de surface , Eau/composition chimique
14.
Inorg Chem ; 52(7): 3594-6, 2013 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-23496379

RÉSUMÉ

Herein we describe the synthesis of a new heterodinuclear Fe(III)Cu(II) model complex for the active site of purple acid phosphatases and its binding to a polyamine chain, a model for the amino acid residues around the active site. The properties of these systems and their catalytic activity in the hydrolysis of bis(2,4-dinitrophenyl)phosphate are compared, and conclusions regarding the effects of the second coordination sphere are drawn. The positive effect of the polymeric chain on DNA hydrolysis is also described and discussed.


Sujet(s)
Acid phosphatase/composition chimique , Complexes de coordination/composition chimique , Complexes de coordination/synthèse chimique , Cuivre/composition chimique , Glycoprotéines/composition chimique , Fer/composition chimique , Protéines végétales/composition chimique , Polyamines/composition chimique , Acides aminés/composition chimique , Biocatalyse , Domaine catalytique , Cations , ADN/composition chimique , Hydrolyse , Cinétique , Modèles moléculaires , Mimétisme moléculaire
15.
J Colloid Interface Sci ; 370(1): 94-101, 2012 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-22257961

RÉSUMÉ

Four modified hyperbranched polyethylene imines (PEIs) were synthesized by means of the alkylation of PEI. SAXS, viscosity, surface tension, and pyrene fluorescence emission were then used as techniques to examine the conformation and aggregation of the modified PEIs in aqueous solution, in the absence and presence of sodium dodecylsulfate (SDS). Analysis of the SAXS data showed that the radius of gyration decreases with an increase in the alkyl chain length of the polymer, while the viscosity data indicated a decrease in the intrinsic viscosity under the same conditions. The nonmodified PEI was not surface active, while the hydrophobically modified samples showed pronounced surface activity and the presence of hydrophobic domains. On addition of SDS, the onset of the formation of polymer-surfactant complexes was determined, indicating a decrease in the critical aggregate concentration with an increase in the alkyl chain length of the polymer backbone.

16.
Langmuir ; 27(19): 11860-6, 2011 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-21863865

RÉSUMÉ

Colloidal silver nanoparticles (Ag-NPs) with a mean diameter of 6.1 nm and a narrow size distribution were prepared by reduction of the correspondent metal salt with injection of NaBH(4), in the presence of dextran, and characterized by UV-vis, TEM, and DLS. The concentration of all reactants involved in the formation of the nanoparticles was optimized with the use of a new multivariate method, which revealed a significant reduction in the number of experiments when compared with the vast majority of univariate methods described in the literature. The Ag-NPs-dextran composite was able to efficiently catalyze the p-nitrophenol reduction in water by NaBH(4) with a rate constant normalized to the surface area of the nanoparticles per unit volume (k(1)) of 1.41 s(-1) m(-2) L, which is higher than values ever reported for Ag-NPs catalytic systems.


Sujet(s)
Dextrane/composition chimique , Nanoparticules métalliques/composition chimique , Argent/composition chimique , Tétrahydroborates/composition chimique , Catalyse , Colloïdes/synthèse chimique , Colloïdes/composition chimique , Cinétique , Oxydoréduction , Taille de particule , Propriétés de surface
17.
Langmuir ; 26(22): 17772-9, 2010 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-20886902

RÉSUMÉ

A new and straightforward method for screening highly catalytically active silver nanoparticle-polymer composites derived from branched polyethyleneimine (PEI) is reported. The one-step systematic derivatization of the PEI scaffold with alkyl (butyl or octyl) and ethanolic groups led to a structural diversity correlated to the stabilization of silver nanoparticles and catalysis. Analysis of PEI derivative libraries identified a silver nanoparticle-polymer composite that was able to efficiently catalyze the p-nitrophenol reduction by NaBH(4) in water with a rate constant normalized to the surface area of the nanoparticles per unit volume (k(1)) of 0.57 s(-1) m(-2) L. Carried out in the presence of excess NaBH(4), the catalytic reaction was observed to follow pseudo-first-order kinetics and the apparent rate constant was linearly dependent on the total surface area of the silver nanoparticles (Ag-NPs), indicating that catalysis takes place on the surface of the nanoparticles. All reaction kinetics presented induction periods, which were dependent on the concentration of substrates, the total surface of the nanoparticles, and the polymer composition. All data indicated that this induction time is related to the resistance to substrate diffusion through the polymer support. Hydrophobic effects are also assumed to play an important role in the catalysis, through an increase in the local substrate concentration.


Sujet(s)
Nanoparticules métalliques/composition chimique , Polyéthylèneimine/analogues et dérivés , Polyéthylèneimine/composition chimique , Argent/composition chimique , Tétrahydroborates/composition chimique , Catalyse , Interactions hydrophobes et hydrophiles , Hydroquinones/composition chimique , Cinétique , Nitrophénols/composition chimique , Oxydoréduction , Taille de particule , Réducteurs/composition chimique , Nitrate d'argent/composition chimique , Eau/composition chimique
18.
J Am Chem Soc ; 129(24): 7611-9, 2007 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-17530755

RÉSUMÉ

The efficient integration of binding, catalysis, and multiple turnovers remains a challenge in building enzyme models. We report that systematic derivatization of polyethylene imine (PEI) with alkyl (C(2)-C(12)), benzyl, and guanidinium groups gives rise to catalysts ('synzymes') with rate accelerations (k(cat)/k(uncat)) of up to 10(4) for the intramolecular transesterification of 2-hydroxypropyl-p-nitrophenyl phosphate, HPNP, in the absence of metal. The synzymes exhibit saturation kinetics (K(M) approximately 250 microM, k(cat) approximately 0.5 min(-1)) and up to 2340 turnovers per polymer molecule. Catalysis can be specifically and competitively inhibited by anionic and hydrophobic small molecules. The efficacy of catalysis is determined by the PEI derivatization pattern. The derivatization reagents exert a synergistic effect, i.e., their combinations increase catalysis by more than the sum of each single modification. The pH-rate profile for k(cat)/K(M) is bell shaped with a maximum at pH 7.85 and can be explained as a combination of two effects that both have to be operative for optimal activity: K(M) increases at high pH due to deprotonation of PEI amines that bind the anionic substrate and kcat decreases as the availability of hydroxide decreases at low pH. Thus, catalysis is based on substrate binding by positively charged amine groups and the presence of hydroxide ion in active sites in an environment that is tuned for efficient catalysis. Inhibition studies suggest that the basis of catalysis and multiple turnovers is differential molecular recognition of the doubly negatively charged transition state (over singly charged ground state and product): this contributes a factor of at least 5-10-fold to catalysis and product release.


Sujet(s)
Enzymes/composition chimique , Enzymes/métabolisme , Imines/métabolisme , Phosphates/métabolisme , Polyéthylènes/métabolisme , Catalyse , Concentration en ions d'hydrogène , Imines/composition chimique , Métaux , Modèles chimiques , Structure moléculaire , Polyéthylènes/composition chimique
19.
J Phys Chem B ; 110(26): 13011-20, 2006 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-16805608

RÉSUMÉ

The controlled decomposition of Pt2(dba)3 (dba = dibenzylideneacetone) dispersed in 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4) and hexafluorophosphate (BMI.PF6) ionic liquids in the presence of cyclohexene by molecular hydrogen produces Pt0 nanoparticles. The formation of these nanoparticles follows the two-step [A --> B, A + B --> 2B (k1, k2)] autocatalytic mechanism. The catalytic activity in the hydrogenation of cyclohexene is influenced by the nature of the anion rather than the mean-diameter of the nanoparticles. Thus, higher catalytic activity was obtained with Pt0 dispersed in BMI.BF4 containing the less coordinating anion although these nanoparticles possess a larger mean diameter (3.4 nm) than those obtained in BMI.PF6 (2.3 nm). Similar mean diameter values were estimated from in situ XRD and SAXS. XPS analyses clearly show the interactions of the ionic liquid with the metal surface demonstrating the formation of an ionic liquid protective layer surrounding the platinum nanoparticles. SAXS analysis indicated the formation of a semi-organized ionic liquid layer surrounding the metal particles with an extended molecular length of around 2.8 nm in BMI.BF4 and 3.3 nm in BMI.PF6.

20.
J Org Chem ; 69(23): 7898-905, 2004 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-15527267

RÉSUMÉ

Nonionic hydrazine reacts with anionic bis(2,4-dinitrophenyl) phosphate (BDNPP), giving 2,4-dinitrophenyl hydrazine and dianionic 2,4-dinitrophenyl phosphate by an S(N)2(Ar) reaction, and at the phosphoryl center, giving 2,4-dinitrophenoxide ion and a transient phosphorylated hydrazine that rearranges intramolecularly to N-(2,4-dinitrophenyl)-N-phosphonohydrazine. Approximately 58% of the reaction at pD = 10 occurs by N-phosphorylation, as shown by (31)P NMR spectroscopy. Reaction of HO(2)(-) is wholly at phosphorus, and the intermediate peroxophosphate reacts intramolecularly, displacing a second 2,4-dinitrophenoxide ion, or with H(2)O(2), giving 2,4-dinitrophenyl phosphate and O(2). Rate constants of O- and N-phosphorylation in reactions at phosphorus of NH(2)NH(2), HO(2)(-), and NH(2)OH and its methyl derivatives follow Bronsted relationships with similar slopes, but plots differ for oxygen and nitrogen nucleophiles. The reaction with NH(2)NH(2) has been probed by using both NMR spectroscopy and electrospray ionization mass and tandem mass spectrometry, with the novel interception of key reaction intermediates in the course of reaction.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...