Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38473707

RÉSUMÉ

Influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Recently, a specific link between IAV infection and neurodegenerative disease progression has been established. The non-structural NS1 protein of IAV regulates viral replication during infection and antagonizes host antiviral responses, contributing to influenza virulence. In the present study, we have prepared a mouse lung-to-lung adapted to the NS1-truncated virus (NS80ad). Transcriptome analysis of the gene expression in the lungs revealed that infection with wild-type A/WSN/33 (WSN), NS80, and NS80ad viruses resulted in different regulation of genes involved in signaling pathways associated with the cell proliferation, inflammatory response, and development of neurodegenerative diseases. NS1 protein did not influence the genes involved in the RIG-I-like receptor signaling pathway in the brains. Lethal infection with IAVs dysregulated expression of proteins associated with the development of neurodegenerative diseases (CX3CL1/Fractalkine, Coagulation factor III, and CD105/Endoglin, CD54/ICAM-1, insulin-like growth factor-binding protein (IGFBP)-2, IGFBP-5, IGFBP-6, chitinase 3-like 1 (CHI3L1), Myeloperoxidase (MPO), Osteopontin (OPN), cystatin C, and LDL R). Transcription of GATA3 mRNA was decreased, and expression of MPO was inhibited in the brain infected with NS80 and NS80ad viruses. In addition, the truncation of NS1 protein led to reduced expression of IGFBP-2, CHI3L1, MPO, and LDL-R proteins in the brains. Our results indicate that the influenza virus influences the expression of proteins involved in brain function, and this might occur mostly through the NS1 protein. These findings suggest that the abovementioned proteins represent a promising target for the development of potentially effective immunotherapy against neurodegeneration.


Sujet(s)
Virus de la grippe A , Grippe humaine , Maladies neurodégénératives , Animaux , Souris , Humains , Virus de la grippe A/génétique , Immunité innée , Interactions hôte-pathogène/génétique , Encéphale
2.
Pathog Dis ; 812023 01 17.
Article de Anglais | MEDLINE | ID: mdl-36997335

RÉSUMÉ

Murine herpesvirus 68 (MHV-68) belongs to the subfamily Gammaherpesvirinae of the family Herpesviridae. This exceptional murine herpesvirus is an excellent model for the study of human gammaherpesvirus infections. Cells infected with MHV-68 under nonpermissive conditions for viral replication produce substances designated as MHV-68 growth factors (MHGF-68), that can cause transformation of the cells, or on the other side, turn transformed cells into normal. It was already proposed, that the MHGF-68 fractions cause transformation, disruption of the cytoskeleton and slower growth of the tumors in nude mice. Here, we examined newly extracted fractions of MHGF-68 designated as F5 and F8. Both fractions proved to inhibit the growth of the spheroids and also tumours induced in nude mice. What more, the fractions caused the decrease of the protein levels of wt p53 and HIF-1α. Decreased levels of p53 and HIF-1α activity leads to decreased vascularization, slower tumour growth, and lower adaptation to hypoxic conditions. This would propose MHGF-68 fractions, or their human herpesvirus equivalents, as a potential anticancer drugs in combined chemotherapy.


Sujet(s)
Gammaherpesvirinae , Infections à Herpesviridae , Tumeurs , Rhadinovirus , Souris , Animaux , Humains , Souris nude , Protéine p53 suppresseur de tumeur , Infections à Herpesviridae/traitement médicamenteux , Infections à Herpesviridae/anatomopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...