Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 37
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS One ; 18(11): e0294316, 2023.
Article de Anglais | MEDLINE | ID: mdl-37972127

RÉSUMÉ

Campomanesia adamantium O. Berg. is a fruit tree species native to the Brazilian Cerrado biome whose fruits are consumed raw by the population. The present study determined the chemical composition of the C. adamantium fruit pulp (FPCA) and investigated its in vitro antioxidant potential and its biological effects in a Caenorhabditis elegans model. The chemical profile obtained by LC-DAD-MS identified 27 compounds, including phenolic compounds, flavonoids, and organic carboxylic acids, in addition to antioxidant lipophilic pigments and ascorbic acid. The in vitro antioxidant activity was analysed by the radical scavenging method. In vivo, FPCA showed no acute reproductive or locomotor toxicity. It promoted protection against thermal and oxidative stress and increased the lifespan of C. elegans. It also upregulated the antioxidant enzymes superoxide dismutase and glutathione S-transferase and activated the transcription factor DAF-16. These results provide unprecedented in vitro and in vivo evidence for the potential functional use of FPCA in the prevention of oxidative stress and promotion of longevity.


Sujet(s)
Protéines de Caenorhabditis elegans , Myrtaceae , Animaux , Antioxydants/pharmacologie , Caenorhabditis elegans/métabolisme , Longévité , Brésil , Fruit/métabolisme , Extraits de plantes/composition chimique , Stress oxydatif , Myrtaceae/composition chimique , Protéines de Caenorhabditis elegans/métabolisme
2.
Ecotoxicol Environ Saf ; 264: 115415, 2023 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-37696077

RÉSUMÉ

Environmental exposure to metals can induce cytotoxic and genotoxic effects in cells and affect the health of the exposed population. To investigate the effects of aluminum (Al) and manganese (Mn), we evaluated their cytogenotoxicity using peripheral blood mononuclear cells (PBMCs) exposed to these metals at previously quantified concentrations in groundwater intended for human consumption. The cell viability, membrane integrity, nuclear division index (NDI), oxidative stress, cell death, cell cycle, and DNA damage were analyzed in PBMCs exposed to Al (0.2, 0.6, and 0.8 mg/L) and Mn (0.1, 0.3, 1.0, and 1.5 for 48 h. We found that Al induced late apoptosis; decreased cell viability, NDI, membrane integrity; and increased DNA damage. However, no significant alterations in the early apoptosis, cell cycle, and reactive oxygen species levels were observed. In contrast, exposure to Mn altered all evaluated parameters related to cytogenotoxicity. Our data show that even concentrations allowed by the Brazilian legislation for Al and Mn in groundwater intended for human consumption cause cytotoxic and genotoxic effects in PBMCs. Therefore, in view of the results found, a comprehensive approach through in vivo investigations is needed to give robustness and validity to the results obtained, thus broadening the understanding of the impacts of metals on the health of environmentally exposed people.


Sujet(s)
Antinéoplasiques , Nappe phréatique , Humains , Aluminium , Manganèse/toxicité , Agranulocytes , Altération de l'ADN
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-37513863

RÉSUMÉ

In this study, a novel compound was isolated, identified, and its chemical structure was determined from the extract of the roots of Senna velutina. In addition, we sought to evaluate the anticancer potential of this molecule against melanoma and leukemic cell lines and identify the pathways of cell death involved. To this end, a novel anthraquinone was isolated from the barks of the roots of S. velutina, analyzed by HPLC-DAD, and its molecular structure was determined by nuclear magnetic resonance (NMR). Subsequently, their cytotoxic activity was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method against non-cancerous, melanoma, and leukemic cells. The migration of melanoma cells was evaluated by the scratch assay. The apoptosis process, caspase-3 activation, analysis of mitochondrial membrane potential, and measurement of ROS were evaluated by flow cytometry technique. In addition, the pharmacological cell death inhibitors NEC-1, RIP-1, BAPTA, Z-VAD, and Z-DEVD were used to confirm the related cell death mechanisms. With the results, it was possible to elucidate the novel compound characterized as 2'-OH-Torosaol I. In normal cells, the compound showed no cytotoxicity in PBMC but reduced the cell viability of all melanoma and leukemic cell lines evaluated. 2'-OH-Torosaol I inhibited chemotaxis of B16F10-Nex2, SK-Mel-19, SK-Mel-28 and SK-Mel-103. The cytotoxicity of the compound was induced by apoptosis via the intrinsic pathway with reduced mitochondrial membrane potential, increased levels of reactive oxygen species, and activation of caspase-3. In addition, the inhibitors demonstrated the involvement of necroptosis and Ca2+ in the death process and confirmed caspase-dependent apoptosis death as one of the main programmed cell death pathways induced by 2'-OH-Torosaol I. Taken together, the data characterize the novel anthraquinone 2'-OH-Torosaol I, demonstrating its anticancer activity and potential application in cancer therapy.

4.
Antioxidants (Basel) ; 12(6)2023 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-37372006

RÉSUMÉ

Cerumen is a bee product produced exclusively by stingless bees, resulting from a mixture of beeswax and plant resins. The antioxidant activity of bee products has been investigated since oxidative stress is associated with the onset and progression of several diseases that can lead to death. In this context, this study aimed to investigate the chemical composition and antioxidant activity of cerumen produced by the Geotrigona sp. and Tetragonisca fiebrigi stingless bees, in vitro and in vivo. The chemical characterization of cerumen extracts was performed by HPLC, GC, and ICP OES analyses. The in vitro antioxidant potential was evaluated by DPPH• and ABTS•+ free radical scavenging methods, and in human erythrocytes subjected to oxidative stress with AAPH. In vivo, the antioxidant potential was evaluated in Caenorhabditis elegans nematodes subjected to oxidative stress with juglone. Both cerumen extracts presented phenolic compounds, fatty acids, and metallic minerals in their chemical constitution. The cerumen extracts showed antioxidant activity by capturing free radicals, reducing lipid peroxidation in human erythrocytes, and reducing oxidative stress in C. elegans, observed by the increase in viability. The results obtained indicate that cerumen extracts from Geotrigona sp. and Tetragonisca fiebrigi stingless bees may be promising against oxidative stress and associated diseases.

5.
Oxid Med Cell Longev ; 2022: 8790810, 2022.
Article de Anglais | MEDLINE | ID: mdl-36466091

RÉSUMÉ

Obesity is an epidemic disease worldwide, associated with oxidative stress and the development of several other diseases. Bauhinia rufa (Bong.) Steud. is a native Brazilian Cerrado medicinal plant popularly used for the treatment of obesity. In this context, we investigated the chemical composition of the methanolic extract of B. rufa leaves (MEBr) and evaluated the antioxidant activity and its impact on the prevention and treatment of obesity in mice fed a high-fat diet (HFD 60%). Additionally, the acute oral toxicity of MEBr was evaluated. In MEBr, 17 glycosylated compounds were identified, including myricetin, quercetin, kaempferol, coumaroyl, cyanoglucoside, and megastigmane. In vitro, MEBr showed antioxidant activity in different methods: DPPH•, ABTS•+, FRAP, iron-reducing power, inhibition of ß-carotene bleaching, and inhibition of DNA fragmentation. In human erythrocytes, MEBr increased the activities of antioxidant enzymes, superoxide dismutase, and catalase. Under oxidative stress, MEBr reduced oxidative hemolysis, and the malondialdehyde (MDA) levels generated in erythrocytes. Mice treated acutely with MEBr (2000 mg/kg) showed no signs of toxicity. During 90 days, the mice received water or MEBr simultaneously with HFD for induction of obesity. At this stage, MEBr was able to reduce the gain of subcutaneous white adipose tissue (WAT) and prevent the increase of MDA in the heart and brain. After 180 days of HFD for obesity induction, mice that received MEBr simultaneously with HFD (HFD-MEBr) in the last 60 days of treatment (120-180 days) showed a reduction of retroperitoneal and mesenteric WAT deposits and MDA levels in the heart, liver, kidney, and brain, compared to the HFD-Control group. These effects of MEBr were similar to mice treated with sibutramine (HFD-Sibutramine, 2 mg/kg). Combined, the results show that compounds from the leaves of B. rufa affect controlling oxidative stress and actions in the prevention and treatment of obesity. Thus, associated oxidative stress reduction and body composition modulation, in obese people, can contribute to the prevention of obesity-related comorbidities and improve quality of life.


Sujet(s)
Bauhinia , Alimentation riche en graisse , Humains , Animaux , Souris , Alimentation riche en graisse/effets indésirables , Antioxydants/pharmacologie , Antioxydants/usage thérapeutique , Qualité de vie , Souris de lignée C57BL , Obésité/traitement médicamenteux , Stress oxydatif , Méthanol
6.
Oxid Med Cell Longev ; 2021: 2169017, 2021.
Article de Anglais | MEDLINE | ID: mdl-34603594

RÉSUMÉ

Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.


Sujet(s)
Antinéoplasiques/pharmacologie , Apoptose/effets des médicaments et des substances chimiques , Propolis/pharmacologie , Animaux , Antinéoplasiques/composition chimique , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Humains , Mitochondries/effets des médicaments et des substances chimiques , Mitochondries/physiologie , Propolis/composition chimique , Protéines proto-oncogènes c-bcl-2/métabolisme , Espèces réactives de l'oxygène/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques
7.
PLoS One ; 16(4): e0249919, 2021.
Article de Anglais | MEDLINE | ID: mdl-33914744

RÉSUMÉ

Zootherapy is a traditional secular practice among the Guarani-Kaiowá indigenous ethnic group living in Mato Grosso do Sul, Brazil. My people use the oil extracted from larvae of the snout beetle Rhynchophorus palmarum (Linnaeus, 1758) to treat and heal skin wounds and respiratory diseases. Based on this ethnopharmacological knowledge, the chemical composition and antioxidant, antimicrobial, and healing properties of R. palmarum larvae oil (RPLO) were investigated, as well as possible toxic effects, through in vitro and in vivo assays. The chemical composition of the RPLO was determined using gas chromatography coupled with mass spectrometry. The antioxidant activity of RPLO was investigated through the direct 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and the antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria that are pathogenic to humans. The healing properties of RPLO were investigated by performing a cell migration assay using human lung fibroblasts (MRC-5), and the toxicity was analyzed, in vivo, using a Caenorhabditis elegans model and MRC-5 cells, in vitro. RPLO contains 52.2% saturated fatty acids and 47.4% unsaturated fatty acids, with palmitic acid (42.7%) and oleic acid (40%) representing its major components, respectively. RPLO possesses direct antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 46.15 mg.ml-1. The antimicrobial activity of RPLO was not observed at a concentration of 1% (v/v). RPLO did not alter the viability of MRC-5 cells and did not exert toxic effects on C. elegans. Furthermore, MRC-5 cells incubated with 0.5% RPLO showed a higher rate of cell migration than that of the control group, supporting its healing properties. Taken together, RPLO possesses direct antioxidant activity and the potential to aid in the healing process and is not toxic toward in vitro and in vivo models, corroborating the safe use of the oil in traditional Guarani-Kaiowá medicine.


Sujet(s)
Coléoptères/métabolisme , Bactéries à Gram négatif/effets des médicaments et des substances chimiques , Bactéries à Gram positif/effets des médicaments et des substances chimiques , Huile essentielle/pharmacologie , Animaux , Anti-infectieux/composition chimique , Anti-infectieux/isolement et purification , Anti-infectieux/pharmacologie , Antioxydants/composition chimique , Caenorhabditis elegans/effets des médicaments et des substances chimiques , Lignée cellulaire , Mouvement cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Coléoptères/croissance et développement , Chromatographie gazeuse-spectrométrie de masse , Humains , Larve/composition chimique , Larve/métabolisme , Tests de sensibilité microbienne , Huile essentielle/analyse , Huile essentielle/composition chimique
8.
Phytochem Anal ; 32(6): 992-1002, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-33634541

RÉSUMÉ

INTRODUCTION: The chemical diversity of plants plays an essential role in the development of new drugs. However, new bioactive compound identification and isolation are challenging due to the complexity and time-consuming nature of the traditional process. Recently, alternative strategies have become popular, such as the statistical approach to correlate compounds with biological activities, overcoming bottlenecks in bioactive natural product research. OBJECTIVE: We aimed to determine bioactive compounds against resistant human melanoma cells from leaves of Aspidosperma subincanum, Copaifera langsdorffii, Coussarea hydrangeifolia, Guarea guidonea and Tapirira guianensis, using a metabolomics approach. MATERIAL AND METHODS: The extracts and fractions were obtained by accelerated solvent extraction (ASE) and tested against resistant melanoma cells SK-MEL-28 and SK-MEL-103. Chemical analysis was performed by high-performance diode array detector tandem mass spectrometry (HPLC-DAD-MS/MS). Chemical and biological data were analysed through univariate and multivariate analysis. RESULTS: The species present high chemical diversity, including indole alkaloids, glycosylated flavonoids, galloylquinic acid derivatives, cinnamic acid derivatives, and terpenes. The ASE fractionation separated the compounds according to the physicochemical properties; only C. langsdorffii and T. guianensis extracts were active. Both results from the chemical profile and the biological assay were treated using a metabolomics approach to identify the contribution of different classes of secondary metabolites in the viability of human melanoma cells. The analyses showed the metabolites from C. langsdorffii and T. guianensis, such as polyphenols and terpenes, were the main compounds correlated with the biological response. CONCLUSION: These findings afford alternative pathways that are trustworthy and less time-consuming to identify new bioactive compounds against multidrug-resistant human melanoma cells.


Sujet(s)
Mélanome , Spectrométrie de masse en tandem , Chromatographie en phase liquide à haute performance , Chromatographie gazeuse-spectrométrie de masse , Humains , Mélanome/traitement médicamenteux , Métabolomique , Extraits de plantes/pharmacologie , Arbres
9.
Biomolecules ; 10(8)2020 07 25.
Article de Anglais | MEDLINE | ID: mdl-32722431

RÉSUMÉ

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. In vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


Sujet(s)
Antioxydants/pharmacologie , Protéines de Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/métabolisme , Dipteryx/composition chimique , Facteurs de transcription Forkhead/métabolisme , Fruit/composition chimique , Stress oxydatif/effets des médicaments et des substances chimiques , Superoxide dismutase/métabolisme , Animaux , Animal génétiquement modifié , Antioxydants/isolement et purification , Brésil , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/génétique , Chromatographie en phase liquide/méthodes , Facteurs de transcription Forkhead/génétique , Prairie , Espérance de vie , Longévité/effets des médicaments et des substances chimiques , Spectrométrie de masse/méthodes , Extraits de plantes/composition chimique , Extraits de plantes/isolement et purification , Extraits de plantes/pharmacologie , Superoxide dismutase/génétique
10.
Biofouling ; 36(5): 516-527, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32619153

RÉSUMÉ

Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide-PEP-IA18-was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5 µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10 × MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.


Sujet(s)
Antifongiques/pharmacologie , Biofilms , Candida , Profilines/pharmacologie , Spodoptera/microbiologie , Animaux , Candida albicans , Humains , Tests de sensibilité microbienne , Peptides
11.
J Nutr Biochem ; 85: 108428, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32679443

RÉSUMÉ

Polyphenols have demonstrated several potential biological activities, notably antitumoral activity dependent on immune function. In the present review, we describe studies that investigated antitumor immune responses influenced by polyphenols and the mechanisms by which polyphenols improve the immune response. We also discuss the limitations in related areas, especially unexplored areas of research, and next steps required to develop a therapeutic approach utilizing polyphenols in oncology.


Sujet(s)
Antinéoplasiques/pharmacologie , Facteurs immunologiques/pharmacologie , Tumeurs/traitement médicamenteux , Polyphénols/pharmacologie , Animaux , Antinéoplasiques/pharmacocinétique , Antinéoplasiques/usage thérapeutique , Humains , Immunité/effets des médicaments et des substances chimiques , Facteurs immunologiques/pharmacocinétique , Facteurs immunologiques/usage thérapeutique , Tumeurs/immunologie , Polyphénols/pharmacocinétique , Polyphénols/usage thérapeutique , Échappement de la tumeur à la surveillance immunitaire/effets des médicaments et des substances chimiques
12.
Microorganisms ; 8(6)2020 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-32517286

RÉSUMÉ

Schinus terebinthifolius Raddi is a medicinal plant widely used for the treatment of various diseases. The secondary metabolites responsible for the pharmacological properties can be produced directly by the plant or by endophytic fungi. The objective of this study was to evaluate the diversity of endophytic fungi of different parts of S. terebinthifolius and to identify chemical compounds produced by endophytes and their antioxidant and antibacterial activities. For this, fruits, stem bark and roots were dried, ground and placed in fungal growth medium. The selected endophytes were grown and subjected to extraction with ethyl acetate. DPPH, FRAP, ß-carotene bleaching and antimicrobial assays were performed. The phylogenetic tree was elaborated, encompassing 15 different species. The fungal extracts showed hydroxybenzoic acids and 1-dodecanol as predominant compounds. All fungal extracts exhibited antioxidant activity. The fungal extracts exhibited bactericidal and bacteriostatic activities against Gram-positive and Gram-negative bacterial ATCC strains and against methicillin-resistant nosocomial bacteria. Among the 10 endophytic fungi evaluated, the extract of the fungus Ochrocladosporium elatum showed higher phenolic content and exhibited higher antioxidant and antibacterial activities in all tests. Together, the results increase the known diversity of S. terebinthifolius endophytic fungi, secondary metabolites produced and their antioxidant and antibacterial activities.

13.
Oxid Med Cell Longev ; 2020: 5238650, 2020.
Article de Anglais | MEDLINE | ID: mdl-32256951

RÉSUMÉ

Oxidative stress is a metabolic disorder linked with several chronic diseases, and this condition can be improved by natural antioxidants. The fruit pulp of the palm Acrocomia aculeata (Jacq.) Lodd. ex Mart. is widely used in the treatment of various illnesses, but as far as we know, there are no reports regarding the properties of its leaves. Thus, we aimed to evaluate the antioxidant activity of A. aculeata leaf extracts obtained with water (EA-Aa), ethanol (EE-Aa), and methanol (EM-Aa) solvents. The extracts were chemically characterized, and their antioxidant activity was assessed through the scavenging of the free radicals DPPH and ABTS. EE-Aa and EM-Aa showed the highest amounts of phenolic compounds and free radical scavenging activity. However, EA-Aa was more efficient to protect human erythrocytes against AAPH-induced hemolysis and lipid peroxidation. Thus, we further show the antioxidant effect of EA-Aa in preventing AAPH-induced protein oxidation, H2O2-induced DNA fragmentation, and ROS generation in Cos-7 cells. Increased levels of Sirt1, catalase, and activation of ERK and Nrf2 were observed in Cos-7 treated with EA-Aa. We also verify increased survival in nematodes C. elegans, when induced to the oxidative condition by Juglone. Therefore, our results showed a typical chemical composition of plants for all extracts, but the diversity of compounds presented in EA-Aa is involved in the lower toxicity and antioxidant properties provided to the macromolecules tested, proteins, DNA, and lipids. This protective effect also proven in Cos-7 and in C. elegans was probably due to the activation of the Sirt1/Nrf2 pathway. Altogether, the low toxicity and the antioxidant properties of EA-Aa showed in all the experimental models support its further use in the treatment of oxidative stress-related diseases.


Sujet(s)
Fruit/composition chimique , Feuilles de plante/composition chimique , Sirtuine-1/composition chimique , Humains , Stress oxydatif
14.
Oxid Med Cell Longev ; 2019: 3685264, 2019.
Article de Anglais | MEDLINE | ID: mdl-31534620

RÉSUMÉ

The use of natural antioxidants in cancer therapy has increased: first, due to the potential of natural antioxidants to kill tumour cells and second, because of their capacity to protect healthy cells from the damage caused by chemotherapy. This review article discusses the antioxidant properties of extracts obtained from medicinal plants from the Brazilian Cerrado and the cell death profile induced by each of these extracts in malignant cells. Next, we describe the capacity of other medicinal plants from the Cerrado to protect against chemotherapy-induced cell toxicity. Finally, we focus on recent insights into the cell death profile induced by extracts from Cerrado plants and perspectives for future therapeutic approaches.


Sujet(s)
Antinéoplasiques/usage thérapeutique , Antioxydants/usage thérapeutique , Extraits de plantes/composition chimique , Plantes médicinales/composition chimique , Agents protecteurs/usage thérapeutique , Antinéoplasiques/pharmacologie , Antioxydants/pharmacologie , Brésil , Humains , Agents protecteurs/pharmacologie
15.
Oxid Med Cell Longev ; 2019: 5719483, 2019.
Article de Anglais | MEDLINE | ID: mdl-31285786

RÉSUMÉ

Cutaneous melanoma is among the most aggressive types of cancer, and its rate of occurrence increases every year. Current pharmacological treatments for melanoma are not completely effective, requiring the identification of new drugs. As an alternative, plant-derived natural compounds are described as promising sources of new anticancer drugs. In this context, the objectives of this study were to identify the chemical composition of the ethanolic extract of Senna velutina roots (ESVR), to assess its in vitro and in vivo antitumor effects on melanoma cells, and to characterize its mechanisms of action. For these purposes, the chemical constituents were identified by liquid chromatography coupled to high-resolution mass spectrometry. The in vitro activity of the extract was assessed in the B16F10-Nex2 melanoma cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and based on the apoptotic cell count; DNA fragmentation; necrostatin-1 inhibition; intracellular calcium, pan-caspase, and caspase-3 activation; reactive oxygen species (ROS) levels; and cell cycle arrest. The in vivo activity of the extract was assessed in models of tumor volume progression and pulmonary nodule formation in C57Bl/6 mice. The chemical composition results showed that ESVR contains flavonoid derivatives of the catechin, anthraquinone, and piceatannol groups. The extract reduced B16F10-Nex2 cell viability and promoted apoptotic cell death as well as caspase-3 activation, with increased intracellular calcium and ROS levels as well as cell cycle arrest at the sub-G0/G1 phase. In vivo, the tumor volume progression and pulmonary metastasis of ESVR-treated mice decreased over 50%. Combined, these results show that ESVR had in vitro and in vivo antitumor effects, predominantly by apoptosis, thus demonstrating its potential as a therapeutic agent in the treatment of melanoma and other types of cancer.


Sujet(s)
Antinéoplasiques d'origine végétale/usage thérapeutique , Éthanol/composition chimique , Mélanome expérimental/traitement médicamenteux , Mélanome/traitement médicamenteux , Extraits de plantes/pharmacologie , Racines de plante/composition chimique , Senna/composition chimique , Tumeurs cutanées/traitement médicamenteux , Animaux , Antinéoplasiques d'origine végétale/composition chimique , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Mort cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Fragmentation de l'ADN/effets des médicaments et des substances chimiques , Mâle , Mélanome/métabolisme , Mélanome expérimental/métabolisme , Souris , Souris de lignée C57BL , Extraits de plantes/composition chimique , Tumeurs cutanées/métabolisme , Melanoma, Cutaneous Malignant
16.
Article de Anglais | MEDLINE | ID: mdl-30797984

RÉSUMÉ

Schinus terebinthifolius Raddi, commonly known as Brazilian peppertree, is a plant species widely used in Brazilian traditional medicine for various purposes. The objective of this study was to assess the microbiological quality, safety, chemical profile as well as antioxidant and antidiabetic potentials of different parts of S. terebinthifolius. Microbiological analysis of the methanolic extracts of the roots (MESR), stem bark (MESB) and leaves (MESL) of S. terebinthifolius showed no microbial growth. The concentrations of phenolic compounds, phenolic acids and flavonoids were determined by spectrophotometry. The phenolic compounds of the MESL were identified by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS). The antioxidant activities of the extracts were analyzed by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS+), fluorescence recovery after photobleaching (FRAP), reducing power, ß-carotene bleaching and malondialdehyde (MDA) assays in human erythrocytes. The antidiabetic properties of the extracts were demonstrated in vitro by their inhibition of the α-glucosidase enzyme and their anti-glycation activity via fructose and glyoxal. After showing no acute toxicity in vivo, MESL was able to lower postprandial glycemia after glucose overload in normoglycemic mice as well as the water and feed intake, liver weight, glycemia and serum levels of glycated hemoglobin, aspartate transaminase (AST) and alanine transaminase (ALT) in diabetic mice. Overall, S. terebinthifolius extracts showed microbiological safety along with antioxidant and antidiabetic activities, likely mediated by its chemical constituents, such as gallic acid, gallotannins and glycosylated flavonols.


Sujet(s)
Anacardiaceae/composition chimique , Antioxydants/pharmacologie , Diabète expérimental/traitement médicamenteux , Extraits de plantes/pharmacologie , Animaux , Antioxydants/composition chimique , Bactéries , Glycémie/effets des médicaments et des substances chimiques , Hyperglycémie provoquée , Souris , Souris de lignée C57BL , Écorce/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/toxicité , Feuilles de plante/composition chimique , Racines de plante/composition chimique , Tests de toxicité
17.
Int J Mol Sci ; 19(8)2018 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-30126115

RÉSUMÉ

Stryphnodendron adstringens (Mart.) Coville (Fabaceae) is a tree species native to the Brazilian Cerrado commonly known as barbatimão. In traditional medicine, decoctions or infusions of the stem bark of this plant are used in the treatment of several diseases. The objective of this study was to analyze the chemical composition of Stryphnodendron adstringens aqueous extracts (SAAE) prepared from the stem bark to assess their antioxidant activity and anticancer effects as well as characterize cell death mechanisms against murine B16F10Nex-2 melanoma cells. From the SAAE, gallic acid, gallocatechin, epigallocatechin, dimeric and trimeric proanthocyanidins mainly composed of prodelphinidin units and the isomeric chromones C-hexosyl- and O-pentosyl-5,7-dihydroxychromone were identified. The SAAE showed antioxidant activity through direct free-radical scavenging as well as through oxidative hemolysis and lipid peroxidation inhibition in human erythrocytes. Furthermore, SAAE promoted apoptosis-induced cell death in melanoma cells by increasing intracellular reactive oxygen species (ROS) levels, inducing mitochondrial membrane potential dysfunction and activating caspase-3. Together, these data show the antioxidant and anticancer effects of Stryphnodendron adstringens. These results open new perspectives for studies against other tumor cell lines and in vivo models as well as for the identification and isolation of the chemical constituents responsible for these effects.


Sujet(s)
Antinéoplasiques d'origine végétale/composition chimique , Antinéoplasiques d'origine végétale/pharmacologie , Antioxydants/composition chimique , Antioxydants/pharmacologie , Fabaceae/composition chimique , Mélanome/traitement médicamenteux , Animaux , Cycle cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , 4H-1-Benzopyran-4-ones/composition chimique , 4H-1-Benzopyran-4-ones/pharmacologie , Humains , Mélanome/métabolisme , Potentiel de membrane mitochondriale/effets des médicaments et des substances chimiques , Souris , Stress oxydatif/effets des médicaments et des substances chimiques , Écorce/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Proanthocyanidines/composition chimique , Proanthocyanidines/pharmacologie
18.
Oxid Med Cell Longev ; 2018: 2935051, 2018.
Article de Anglais | MEDLINE | ID: mdl-30050650

RÉSUMÉ

Doxorubicin (DOX) is an efficient chemotherapeutic agent, but its clinical application is limited by its cardiotoxicity associated with increased oxidative stress. Thus, the combination of DOX and antioxidants has been encouraged. In this study, we evaluated (I) the chemical composition and antioxidant capacity of aqueous extracts from Guazuma ulmifolia stem bark (GUEsb) and leaves (GUEl) in 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2'-azobis(2-amidinopropane) dihydrochloride- (AAPH-) or DOX-induced lipid peroxidation inhibition in human blood cells, and intracellular reactive oxygen species (ROS) quantification using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) in K562 erythroleukemia cells incubated with GUEsb and stimulated with hydrogen peroxide; (II) the viability of K562 cells and human leukocytes treated with GUEsb in the absence or presence of DOX using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; (III) the acute toxicity of GUEsb; and (IV) the cardioprotective effect of GUEsb in C57Bl/6 mice treated with DOX. The chemical composition indicated the presence of flavan-3-ol derivatives and condensed tannins in GUEsb and glycosylated flavonoids in GUEl. GUEsb and GUEl showed free-radical scavenging antioxidant activity, antihemolytic activity, and AAPH- as well as DOX-induced malondialdehyde content reduction in human erythrocytes. Based on its higher antioxidant potential, GUEsb was selected and subsequently showed intracellular ROS reduction without impairing the chemotherapeutic activity of DOX in K562 cells or inducing leukocyte cell death, but protected them against DOX-induced cell death. Yet, GUEsb did not show in vivo acute toxicity, and it prevented MDA generation in the cardiac tissue of DOX-treated mice, thus demonstrating its cardioprotective effect. Taken together, the results show that GUEsb and GUEl are natural alternatives to treat diseases associated with oxidative stress and that, in particular, GUEsb may play an adjuvant role in DOX chemotherapy.


Sujet(s)
Doxorubicine/pharmacologie , Malvaceae/composition chimique , Dérivés du biphényle/composition chimique , Cardiotoxicité , Survie cellulaire/effets des médicaments et des substances chimiques , Humains , Cellules K562 , Malonaldéhyde/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Picrates/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Espèces réactives de l'oxygène/métabolisme
19.
Oxid Med Cell Longev ; 2018: 2976985, 2018.
Article de Anglais | MEDLINE | ID: mdl-30050651

RÉSUMÉ

Hancornia speciosa Gomes is a fruit tree, commonly known as the mangaba tree, which is widespread throughout Brazil. The leaves of this plant are used in traditional medicine for medicinal purposes. Thus, the objective of this study was to perform a physicochemical characterization, identify the lipophilic antioxidants and fatty acids, and determine the microbiological quality and safety of H. speciosa leaves. In addition, the antioxidant, antimutagenic, and inhibitory activities of the ethanolic extract of H. speciosa leaves (EEHS) against enzymes related to neurodegenerative diseases, inflammation, obesity, and diabetes were investigated. Furthermore, this study aimed at assessing the in vivo effects of the EEHS on the glycemia of normoglycemic and diabetic Wistar rats. Physicochemical characterization was performed by colorimetry and gas-liquid chromatography with flame ionization detection (GC-FID). The total number of colonies of aerobic mesophiles, molds, and yeasts was determined. The total coliforms and Escherichia coli were counted using the SimPlates kit, and sulphite-reducing Clostridium spores were quantified using the sulphite-polymyxin-sulfadiazine agar method. Salmonella spp. were detected using the 1-2 Test. The antioxidant activity of the EEHS was measured by its inhibition of 2,2'-azobis(2-amidinopropane) dihydrochloride- (AAPH-) induced oxidative hemolysis of human erythrocytes. The antimutagenic activity was determined using the Ames test. The acetylcholinesterase, butyrylcholinesterase, tyrosinase, hyaluronidase, lipase, α-amylase, and α-glycosidase enzyme-inhibiting activities were assessed and compared with commercial controls. The in vivo effects of the EEHS were assessed using the oral glucose tolerance test in normoglycemic Wistar rats and measuring the blood glucose levels in diabetic rats. The results demonstrated physical-chemical parameters of microbiological quality and safety in the leaves of H. speciosa, as well as antioxidant and antimutagenic activities and inhibition of enzymes related to neurodegenerative diseases, inflammation, obesity, and diabetes. In in vivo assays, it was shown that the normoglycemic rats challenged with glucose overload show significantly decreased blood glucose levels when treated with the EEHS. Taken together, the results ensure the microbiological quality and safety as well as showing the contents of carotenoids and polyunsaturated fatty acids of H. speciosa leaves. Additionally, the antioxidant, antimutagenic, anti-inflammatory, anti-Alzheimer's disease, anti-Parkinson's disease, antiobesity, and antihyperglycemic activities of the EEHS were demonstrated.


Sujet(s)
Apocynaceae/composition chimique , Extraits de plantes/pharmacologie , Acetylcholinesterase/métabolisme , Animaux , Antioxydants/métabolisme , Butyrylcholine esterase/métabolisme , Antienzymes/pharmacologie , Érythrocytes/effets des médicaments et des substances chimiques , Érythrocytes/métabolisme , Fruit/composition chimique , Humains , Hyaluronoglucosaminidase/métabolisme , Mâle , Extraits de plantes/effets indésirables , Rats , Rat Wistar
20.
PLoS One ; 13(6): e0197071, 2018.
Article de Anglais | MEDLINE | ID: mdl-29870561

RÉSUMÉ

Diabetes has emerged as one of the largest global epidemics; it is estimated that by 2035, there will be 592 million diabetic people in the world. Brazilian biodiversity and the knowledge of traditional peoples have contributed to the treatment of several diseases, including diabetes. Apis mellifera bee tea is used by indigenous Brazilians to treat diabetes, and this traditional knowledge needs to be recorded and studied.The objective of this study was to record the use and to evaluate the antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea, which is used by the Guarani and Kaiowá indigenous people for the treatment of diabetes. Semi-structured interviews were performed with Guarani and Kaiowá ethnic indigenous people from the State of Mato Grosso do Sul, Brazil, seeking to identify the animal species used for medicinal purposes. For the experimental procedures, tea prepared with macerated Apis mellifera bees was used. In vitro assays were performed to evaluate antioxidant activity; direct free radical scavenging, protection against oxidative hemolysis, lipid peroxidation were evaluated in human erythrocytes and potential in inhibiting the formation of advanced glycation end products (AGEs). In vivo, normoglycemic Swiss male mice treated with Apis mellifera tea (AmT) were subjected to the oral glucose tolerance test and compared with control and metformin-treated groups. Diet-induced diabetic mice were treated for 21 days with AmT and evaluated for glycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes. During interviews, the indigenous people described the use of Apis mellifera bee tea for the treatment of diabetes. In in vitro assays, AmT showed direct antioxidant activity and reduced oxidative hemolysis and malondialdehyde generation in human erythrocytes. The AmT inhibited the formation of AGEs by albumin-fructose pathways and methylglyoxal products. In vivo, after oral glucose overload, normoglycemic mice treated with AmT had reduced hyperglycemia at all times evaluated up to 180 min. AmT also reduced hyperglycemia and malondialdehyde levels in the blood, liver, nervous system, and eyes of diabetic mice to similar levels as those in metformin-treated mice and normoglycemic controls. In summary, Apis mellifera bee tea showed antioxidant, antihyperglycemic, and antidiabetic activity, which provides support for the therapeutic application of Guarani and Kaiowá indigenous knowledge.


Sujet(s)
Antioxydants , Abeilles/composition chimique , Diabète expérimental/traitement médicamenteux , Hypoglycémiants , Thé/composition chimique , Adulte , Animaux , Antioxydants/composition chimique , Antioxydants/pharmacologie , Brésil , Diabète expérimental/métabolisme , Diabète expérimental/anatomopathologie , Femelle , Humains , Hypoglycémiants/composition chimique , Hypoglycémiants/pharmacologie , Mâle , Souris
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE