Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Foods ; 12(20)2023 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-37893711

RÉSUMÉ

In this study, Lactococcus lactis lactis subspecies 1.2472, Streptococcus thermophilus 1.2718, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 were used to ferment rice flour for preparing rice bread. The characteristics of fermented rice bread were studied to elucidate the mechanism by which fermentation improves the anti-staling ability of rice bread. The amylose content of rice flour increased after fermentation. The peak viscosity, attenuation value, final viscosity, recovery value, and gelatinization temperature decreased. Amylopectin was partially hydrolyzed, and the amylose content decreased. The crystallinity of starch decreased, and the minimum crystallinity of Lactococcus lactis subsp. lactis fermented rice starch (LRS) was 11.64%. The thermal characteristics of fermented rice starch, including To, Tp, Tc, and ΔH, were lower than RS (rice starch), and the △H of LRS was the lowest. Meanwhile, LRS exhibited the best anti-staling ability, and with a staling degree of 43.22%. The T22 of the LRF rice flour dough was lower, and its moisture fluidity was the weakest, indicating that moisture was more closely combined with other components. The texture characteristics of fermented rice bread were improved; among these, LRF was the best: the hardness change value was 1.421 times, the elasticity decrease was 2.35%, and the chewability change was 47.07%. There, it provides a theoretical basis for improving the shelf life of bread.

2.
Int J Biol Macromol ; 253(Pt 8): 127618, 2023 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-37879585

RÉSUMÉ

Hydrogels, owing to their unique porous structures, hydrophilic properties, and biocompatibility, are being developed as scaffolds for bone grafts. However, the use of toxic initiators or cross-linking agents is a drawback. To overcome this, we developed Laponite®/cross-linked starch/polyvinyl alcohol (PVA) hydrogels prepared by one-step solution mixing. The structure, rheological properties, and biocompatibility of the hydrogels were investigated. Zeta potential, Fourier transform infrared, and X-ray diffraction analyses showed that hydrogen bonding and electrostatic interactions jointly maintained the structure of the cross-linked hydrogel systems. At a Laponite® concentration of 10 %, the hydrogel with a starch/PVA ratio of 2:2 exhibited a uniform porous structure, the highest storage modulus (G'), and the lowest degradation rate. At a starch/PVA ratio of 2:2, the G' increased; however, the degradation rate decreased with the increase in Laponite® content from 5 % to 20 %. These results indicate that the mechanical strength and degradation rate of the hydrogels could be adjusted by altering the starch/PVA ratio and the amount of Laponite®. In vitro cytotoxicity experiments showed that the Laponite®/starch/PVA (LSP) hydrogels were non-toxic to MC3T3-E1 cells. The starch/PVA ratio had no obvious effect on the proliferation of MC3T3-E1 cells, but an increase in Laponite® content significantly promoted cell proliferation. In summary, the results suggest that these LSP hydrogels have great potential for applications in bone tissue engineering.


Sujet(s)
Poly(alcool vinylique) , Amidon , Amidon/composition chimique , Poly(alcool vinylique)/composition chimique , Hydrogels/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE