Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
2.
Mov Ecol ; 10(1): 31, 2022 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-35871637

RÉSUMÉ

Movement behavior is an important contributor to habitat selection and its incorporation in disease risk models has been somewhat neglected. The habitat preferences of host individuals affect their probability of exposure to pathogens. If preference behavior can be incorporated in ecological niche models (ENMs) when data on pathogen distributions are available, then variation in such behavior may dramatically impact exposure risk. Here we use data from the anthrax endemic system of Etosha National Park, Namibia, to demonstrate how integrating inferred movement behavior alters the construction of disease risk maps. We used a Maximum Entropy (MaxEnt) model that associated soil, bioclimatic, and vegetation variables with the best available pathogen presence data collected at anthrax carcass sites to map areas of most likely Bacillus anthracis (the causative bacterium of anthrax) persistence. We then used a hidden Markov model (HMM) to distinguish foraging and non-foraging behavioral states along the movement tracks of nine zebra (Equus quagga) during the 2009 and 2010 anthrax seasons. The resulting tracks, decomposed on the basis of the inferred behavioral state, formed the basis of step-selection functions (SSFs) that used the MaxEnt output as a potential predictor variable. Our analyses revealed different risks of exposure during different zebra behavioral states, which were obscured when the full movement tracks were analyzed without consideration of the underlying behavioral states of individuals. Pathogen (or vector) distribution models may be misleading with regard to the actual risk faced by host animal populations when specific behavioral states are not explicitly accounted for in selection analyses. To more accurately evaluate exposure risk, especially in the case of environmentally transmitted pathogens, selection functions could be built for each identified behavioral state and then used to assess the comparative exposure risk across relevant states. The scale of data collection and analysis, however, introduces complexities and limitations for consideration when interpreting results.

3.
Sci Adv ; 6(25): eaay0814, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32596440

RÉSUMÉ

Protected areas (PAs) are essential to biodiversity conservation, but their static boundaries may undermine their potential for protecting species under climate change. We assessed how the climatic conditions within global terrestrial PAs may change over time. By 2070, protection is expected to decline in cold and warm climates and increase in cool and hot climates over a wide range of precipitation. Most countries are expected to fail to protect >90% of their available climate at current levels. The evenness of climatic representation under protection-not the amount of area protected-positively influenced the retention of climatic conditions under protection. On average, protection retention would increase by ~118% if countries doubled their climatic representativeness under protection or by ~102% if countries collectively reduced emissions in accordance with global targets. Therefore, alongside adoption of mitigation policies, adaptation policies that improve the complementarity of climatic conditions within PAs will help countries safeguard biodiversity.

4.
Front Microbiol ; 9: 1894, 2018.
Article de Anglais | MEDLINE | ID: mdl-30237787

RÉSUMÉ

Little is known about the role of surface water in the propagation of antibiotic resistance (AR), or the relationship between AR and water quality declines. While healthcare and agricultural sectors are considered the main contributors to AR dissemination, few studies have been conducted in their absence. Using linear models and Bayesian kriging, we evaluate AR among Escherichia coli water isolates collected bimonthly from the Chobe River in Northern Botswana (n = 1997, n = 414 water samples; July 2011-May 2012) in relation to water quality dynamics (E. coli, fecal coliform, and total suspended solids), land use, season, and AR in wildlife and humans within this system. No commercial agricultural or large medical facilities exist within this region. Here, we identify widespread AR in surface water, with land use and season significant predicators of AR levels. Mean AR was significantly higher in the wet season than the dry season (p = 0.003), and highest in the urban landscape (2.15, SD = 0.098) than the protected landscape (1.39, SD = 0.051). In-water E. coli concentrations were significantly positively associated with mean AR in the wet season (p < 0.001) but not in the dry season (p = 0.110), with TSS negatively associated with mean AR across seasons (p = 0.016 and p = 0.029), identifying temporal and spatial relationships between water quality variables and AR. Importantly, when human, water, and wildlife isolates were examined, similar AR profiles were identified (p < 0.001). Our results suggest that direct human inputs are sufficient for extensive dispersal of AR into the environment, with landscape features, season, and water quality variables influencing AR dynamics. Focused and expensive efforts to minimize pollution from agricultural sources, while important, may only provide incremental benefits to the management of AR across complex landscapes. Controlling direct human AR inputs into the environment remains a critical and pressing challenge.

5.
Mov Ecol ; 6: 10, 2018.
Article de Anglais | MEDLINE | ID: mdl-30009032

RÉSUMÉ

BACKGROUND: Continued exploration of the performance of the recently proposed cross-validation-based approach for delimiting home ranges using the Time Local Convex Hull (T-LoCoH) method has revealed a number of issues with the original formulation. MAIN TEXT: Here we replace the ad hoc cross-validation score with a new formulation based on the total log probability of out-of-sample predictions. To obtain these probabilities, we interpret the normalized LoCoH hulls as a probability density. The application of the approach described here results in optimal parameter sets that differ dramatically from those selected using the original formulation. The derived metrics of home range size, mean revisitation rate, and mean duration of visit are also altered using the corrected formulation. CONCLUSION: Despite these differences, we encourage the use of the cross-validation-based approach, as it provides a unifying framework governed by the statistical properties of the home ranges rather than subjective selections by the user.

6.
Ecol Lett ; 21(4): 588-604, 2018 04.
Article de Anglais | MEDLINE | ID: mdl-29446237

RÉSUMÉ

Though epidemiology dates back to the 1700s, most mathematical representations of epidemics still use transmission rates averaged at the population scale, especially for wildlife diseases. In simplifying the contact process, we ignore the heterogeneities in host movements that complicate the real world, and overlook their impact on spatiotemporal patterns of disease burden. Movement ecology offers a set of tools that help unpack the transmission process, letting researchers more accurately model how animals within a population interact and spread pathogens. Analytical techniques from this growing field can also help expose the reverse process: how infection impacts movement behaviours, and therefore other ecological processes like feeding, reproduction, and dispersal. Here, we synthesise the contributions of movement ecology in disease research, with a particular focus on studies that have successfully used movement-based methods to quantify individual heterogeneity in exposure and transmission risk. Throughout, we highlight the rapid growth of both disease and movement ecology and comment on promising but unexplored avenues for research at their overlap. Ultimately, we suggest, including movement empowers ecologists to pose new questions, expanding our understanding of host-pathogen dynamics and improving our predictive capacity for wildlife and even human diseases.


Sujet(s)
Maladies de l'animal , Répartition des animaux , Épidémies de maladies , Écologie , Maladies de l'animal/épidémiologie , Animaux , Humains , Recherche
7.
PLoS One ; 13(2): e0191481, 2018.
Article de Anglais | MEDLINE | ID: mdl-29415077

RÉSUMÉ

In the African buffalo (Syncerus caffer) population of the Kruger National Park (South Africa) a primary sex-ratio distorter and a primary sex-ratio suppressor have been shown to occur on the Y chromosome. A subsequent autosomal microsatellite study indicated that two types of deleterious alleles with a negative effect on male body condition, but a positive effect on relative fitness when averaged across sexes and generations, occur genome-wide and at high frequencies in the same population. One type negatively affects body condition of both sexes, while the other acts antagonistically: it negatively affects male but positively affects female body condition. Here we show that high frequencies of male-deleterious alleles are attributable to Y-chromosomal distorter-suppressor pair activity and that these alleles are suppressed in individuals born after three dry pre-birth years, likely through epigenetic modification. Epigenetic suppression was indicated by statistical interactions between pre-birth rainfall, a proxy for parental body condition, and the phenotypic effect of homozygosity/heterozygosity status of microsatellites linked to male-deleterious alleles, while a role for the Y-chromosomal distorter-suppressor pair was indicated by between-sex genetic differences among pre-dispersal calves. We argue that suppression of male-deleterious alleles results in negative frequency-dependent selection of the Y distorter and suppressor; a prerequisite for a stable polymorphism of the Y distorter-suppressor pair. The Y distorter seems to be responsible for positive selection of male-deleterious alleles during resource-rich periods and the Y suppressor for positive selection of these alleles during resource-poor periods. Male-deleterious alleles were also associated with susceptibility to bovine tuberculosis, indicating that Kruger buffalo are sensitive to stressors such as diseases and droughts. We anticipate that future genetic studies on African buffalo will provide important new insights into gene fitness and epigenetic modification in the context of sex-ratio distortion and infectious disease dynamics.


Sujet(s)
Buffles/génétique , Épigenèse génétique , Chromosomes sexuels , Stress physiologique , Animaux , Études de cohortes , Femelle , Modèles logistiques , Mâle
8.
J Biol Dyn ; 12(1): 16-38, 2018 Dec.
Article de Anglais | MEDLINE | ID: mdl-29157162

RÉSUMÉ

Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.


Sujet(s)
Épidémies , Modèles biologiques , Simulation numérique , Fièvre hémorragique à virus Ebola/diagnostic , Fièvre hémorragique à virus Ebola/épidémiologie , Humains , Incidence , Méthode de Monte Carlo , Prévalence , Probabilité , Processus stochastiques
9.
Mov Ecol ; 5: 26, 2017.
Article de Anglais | MEDLINE | ID: mdl-29225886

RÉSUMÉ

[This corrects the article DOI: 10.1186/s40462-017-0110-4.].

10.
Sci Adv ; 3(9): e1602422, 2017 09.
Article de Anglais | MEDLINE | ID: mdl-28913417

RÉSUMÉ

Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.


Sujet(s)
Biodiversité , Changement climatique , Écosystème , Extinction biologique , Parasites , Animaux , Géographie
11.
Mov Ecol ; 5: 19, 2017.
Article de Anglais | MEDLINE | ID: mdl-28904797

RÉSUMÉ

BACKGROUND: With decreasing costs of GPS telemetry devices, data repositories of animal movement paths are increasing almost exponentially in size. A series of complex statistical tools have been developed in conjunction with this increase in data. Each of these methods offers certain improvements over previously proposed methods, but each has certain assumptions or shortcomings that make its general application difficult. In the case of the recently developed Time Local Convex Hull (T-LoCoH) method, the subjectivity in parameter selection serves as one of the primary impediments to its more widespread use. While there are certain advantages to the flexibility it offers for question-driven research, the lack of an objective approach for parameter selection may prevent some users from exploring the benefits of the method. METHODS: Here we present a cross-validation-based approach for selecting parameter values to optimize the T-LoCoH algorithm. We demonstrate the utility of the approach using a case study from the Etosha National Park anthrax system. RESULTS: Utilizing the proposed algorithm, rather than the guidelines in the T-LoCoH documentation, results in significantly different values for derived site fidelity metrics. CONCLUSIONS: Due to its basis in principles of cross-validation, the application of this method offers a more objective approach than the relatively subjective guidelines set forth in the T-LoCoH documentation and enables a more accurate basis for the comparison of home ranges among individuals and species, as well as among studies.

12.
R Soc Open Sci ; 4(1): 160535, 2017 Jan.
Article de Anglais | MEDLINE | ID: mdl-28280551

RÉSUMÉ

Despite the number of virulent pathogens that are projected to benefit from global change and to spread in the next century, we suggest that a combination of coextinction risk and climate sensitivity could make parasites at least as extinction prone as any other trophic group. However, the existing interdisciplinary toolbox for identifying species threatened by climate change is inadequate or inappropriate when considering parasites as conservation targets. A functional trait approach can be used to connect parasites' ecological role to their risk of disappearance, but this is complicated by the taxonomic and functional diversity of many parasite clades. Here, we propose biological traits that may render parasite species particularly vulnerable to extinction (including high host specificity, complex life cycles and narrow climatic tolerance), and identify critical gaps in our knowledge of parasite biology and ecology. By doing so, we provide criteria to identify vulnerable parasite species and triage parasite conservation efforts.

13.
PLoS Negl Trop Dis ; 10(8): e0004968, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-27564232

RÉSUMÉ

The current outbreak of Zika virus poses a severe threat to human health. While the range of the virus has been cataloged growing slowly over the last 50 years, the recent explosive expansion in the Americas indicates that the full potential distribution of Zika remains uncertain. Moreover, many studies rely on its similarity to dengue fever, a phylogenetically closely related disease of unknown ecological comparability. Here we compile a comprehensive spatially-explicit occurrence dataset from Zika viral surveillance and serological surveys based in its native range, and construct ecological niche models to test basic hypotheses about its spread and potential establishment. The hypothesis that the outbreak of cases in Mexico and North America are anomalous and outside the native ecological niche of the disease, and may be linked to either genetic shifts between strains, or El Nino or similar climatic events, remains plausible at this time. Comparison of the Zika niche against the known distribution of dengue fever suggests that Zika is more constrained by the seasonality of precipitation and diurnal temperature fluctuations, likely confining autochthonous non-sexual transmission to the tropics without significant evolutionary change. Projecting the range of the diseases in conjunction with three major vector species (Aedes africanus, Ae. aegypti, and Ae. albopictus) that transmit the pathogens, under climate change, suggests that Zika has potential for northward expansion; but, based on current knowledge, our models indicate Zika is unlikely to fill the full range its vectors occupy, and public fear of a vector-borne Zika epidemic in the mainland United States is potentially informed by biased or limited scientific knowledge. With recent sexual transmission of the virus globally, we caution that our results only apply to the vector-borne transmission route of the pathogen, and while the threat of a mosquito-carried Zika pandemic may be overstated in the media, other transmission modes of the virus may emerge and facilitate naturalization worldwide.


Sujet(s)
Écosystème , Vecteurs moustiques/virologie , Pandémies , Infection par le virus Zika/épidémiologie , Infection par le virus Zika/transmission , Aedes/physiologie , Aedes/virologie , Amériques/épidémiologie , Animaux , Changement climatique , Épidémies de maladies , Humains , Mexique/épidémiologie , Modèles théoriques , Vecteurs moustiques/physiologie , Amérique du Nord/épidémiologie , Température , Virus Zika/génétique , Virus Zika/isolement et purification , Infection par le virus Zika/prévention et contrôle , Infection par le virus Zika/virologie
14.
Conserv Biol ; 30(4): 724-33, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-26400623

RÉSUMÉ

Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.


Sujet(s)
Conservation des ressources naturelles , Interactions hôte-parasite , Parasites , Animaux , Biodiversité , Écosystème
15.
PLoS One ; 10(7): e0132308, 2015.
Article de Anglais | MEDLINE | ID: mdl-26200110

RÉSUMÉ

The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.


Sujet(s)
ADN mitochondrial/analyse , Analyse de séquence d'ADN/méthodes , Smegmamorpha/classification , Smegmamorpha/génétique , Animaux , Sélection , Conservation des ressources naturelles/méthodes , Floride , Flux des gènes , Génétique des populations , Humains , Données de séquences moléculaires , Phylogéographie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...