Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 146
Filtrer
1.
ACS Nano ; 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39177029

RÉSUMÉ

Transfer printing is a technology widely used in the production of flexible electronics and vertically stacked devices, which involves the transfer of predefined electronic components from a rigid donor substrate to a receiver substrate with a stamp, potentially avoiding the limitations associated with lithographic processes. However, the stamps typically used in transfer printing have several limitations related to unwanted organic solvents, substantial loading, film damage, and inadequate adhesion switching ratios. This study introduces a thermally responsive phase-change stamp for efficient and damage-free transfer printing inspired by the adhesion properties observed during water freezing and ice melting. The stamp employs phase-change composites and simple fabrication protocols, providing robust initial adhesion strength and switchability. The underlying mechanism of switchable adhesion is investigated through experimental and numerical studies. Notably, the stamp eliminates the need for extra preload by spontaneously interlocking with the ink through in situ melting and crystallization. This minimizes ink damage and wrinkle formation during pickup while maintaining strong initial adhesion. During printing, the stamp exhibits a sufficiently weak adhesion state for reliable and consistent release, enabling multiscale, conformal, and damage-free transfer printing, ranging from nano- to wafer-scale. The fabrication of nanoscale short-channel transistors, epidermal electrodes, and human-machine interfaces highlights the potential of this technique in various emerging applications of nanoelectronics, nano optoelectronics, and soft bioelectronics.

2.
Nat Commun ; 15(1): 4022, 2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38740787

RÉSUMÉ

The vectorial optical field (VOF) assumes a pivotal role in light-matter interactions. Beyond its inherent polarization topology, the VOF also encompasses an intrinsic degree of freedom associated with parity (even or odd), corresponding to a pair of degenerate orthogonal modes. However, previous research has not delved into the simultaneous manipulation of both even and odd parities. In this study, we introduce and validate the previously unexplored parity Hall effect for vectorial modes using a metasurface design. Our focus lies on a cylindrical vector beam (CVB) as a representative case. Through the tailored metasurface, we effectively separate two degenerate CVBs with distinct parities in divergent directions, akin to the observed spin states split in the spin Hall effect. Additionally, we provide experimental evidence showcasing the capabilities of this effect in multi-order CVB demultiplexing and parity-demultiplexed CVB-encoded holography. This effect unveils promising opportunities for various applications, including optical communication and imaging.

3.
ACS Appl Mater Interfaces ; 16(20): 26824-26832, 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38733385

RÉSUMÉ

Flexible electronics have gained significant attention as an innovative solution to meet the growing need for information collection from the human body and the environment. However, a critical challenge lies in the need for a transfer printing technique that can fabricate rigid and brittle devices on flexible organic substrates. Here, we develop a multiscale transfer printing technique using an ultraviolet-curable shape memory polymer (SMP) that serves as both the stamp and the receiver substrate. The SMP demonstrates exceptional mechanical performance with toughness at room temperature and remarkable flexibility near its glass transition temperature. The SMP material exhibits an impressive shape recovery ratio and remarkable adhesion switchability. We demonstrate robust transfer printing of diverse objects with different materials and morphologies and in situ transfer of multiscale metallic structures. In addition, the in situ fabricated transparent hyperthermia patches with embedded metal grids are demonstrated, offering potential application in the field of sensors, wearable devices, and electronic skin.

5.
Nanotechnology ; 35(24)2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38478979

RÉSUMÉ

In the realm of molecular detection, the surface-enhanced Raman scattering (SERS) technique has garnered increasing attention due to its rapid detection, high sensitivity, and non-destructive characteristics. However, conventional rigid SERS substrates are either costly to fabricate and challenging to prepare over a large area, or they exhibit poor uniformity and repeatability, making them unsuitable for inspecting curved object surfaces. In this work, we present a flexible SERS substrate with high sensitivity as well as good uniformity and repeatability. First, the flexible polydimethylsiloxane (PDMS) substrate is manually formulated and cured. SiO2/Ag layer on the substrate can be obtained in a single process by using ion beam sputtering. Then, reactive ion etching is used to etch the upper SiO2layer of the film, which directly leads to the desired densely packed nanostructure. Finally, a layer of precious metal is deposited on the densely packed nanostructure by thermal evaporation. In our proposed system, the densely packed nanostructure obtained by etching the SiO2layer directly determines the SERS ability of the substrate. The bottom layer of silver mirror can reflect the penetrative incident light, the spacer layer of SiO2and the top layer of silver thin film can further localize the light in the system, which can realize the excellent absorption of Raman laser light, thus enhancing SERS ability. In the tests, the prepared substrates show excellent SERS performance in detecting crystalline violet with a detection limit of 10-11M. The development of this SERS substrate is anticipated to offer a highly effective and convenient method for molecular substance detection.

6.
Nat Commun ; 15(1): 2248, 2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38472227

RÉSUMÉ

Reducing the silver film to 10 nm theoretically allows higher transparency but in practice leads to degraded transparency and electrical conductivity because the ultrathin film tends to be discontinuous. Herein, we developed a thinning-back process to address this dilemma, in which silver film is first deposited to a larger thickness with high continuity and then thinned back to a reduced thickness with an ultrasmooth surface, both implemented by a flood ion beam. Contributed by the shallow implantation of silver atoms into the substrate during deposition, the thinness of silver films down to 4.5 nm can be obtained, thinner than ever before. The atomic-level surface smooth permits excellent visible transparency, electrical conductivity, and the lowest haze among all existing transparent conductors. Moreover, the ultrathin silver film exhibits the unique robustness of mechanical flexibility. Therefore, the ion-beam thinning-back process presents a promising solution towards the excellent transparent conductor for flexible optoelectronic devices.

7.
ACS Appl Mater Interfaces ; 16(11): 13525-13533, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38467516

RÉSUMÉ

Flexible electronics have been of great interest in the past few decades for their wide-ranging applications in health monitoring, human-machine interaction, artificial intelligence, and biomedical engineering. Currently, transfer printing is a popular technology for flexible electronics manufacturing. However, typical sacrificial intermediate layer-based transfer printing through chemical reactions results in a series of challenges, such as time consumption and interface incompatibility. In this paper, we have developed a time-saving, wafer-recyclable, eco-friendly, and multiscale transfer printing method by using a stable transferable photoresist. Demonstration of photoresist with various, high-resolution, and multiscale patterns from the donor substrate of silicon wafer to different flexible polymer substrates without any damage is conducted using the as-developed dry transfer printing process. Notably, by utilizing the photoresist patterns as conformal masks and combining them with physical vapor deposition and dry lift-off processes, we have achieved in situ fabrication of metal patterns on flexible substrates. Furthermore, a mechanical experiment has been conducted to demonstrate the mechanism of photoresist transfer printing and dry lift-off processes. Finally, we demonstrated the application of in situ fabricated electrode devices for collecting electromyography and electrocardiogram signals. Compared to commercially available hydrogel electrodes, our electrodes exhibited higher sensitivity, greater stability, and the ability to achieve long-term health monitoring.

8.
Opt Lett ; 49(3): 594-597, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38300067

RÉSUMÉ

High-purity structural colors with low fabrication cost are in demand for their commercial applications. Here, we demonstrate an all-dielectric Fabry-Pérot cavity structure consisting of four-layer lossy and lossless dielectric films alternately stacked for producing high-purity and angle-invariant reflective colors. Multiple cavity resonances function together to significantly suppress the undesired reflection with the enhanced optical absorption, leading to a distinct and saturated color with a high efficiency of ∼70%. Besides, due to the high refractive indices of constituent materials, the color appearance of the designed structure can be maintained well at ±50° incident angle for two polarization states. The excellent color performance of the proposed device together with cost-effective manufacturing convenience opens up new avenues for their large-area applications in various areas.

10.
Nat Commun ; 14(1): 6838, 2023 Oct 27.
Article de Anglais | MEDLINE | ID: mdl-37891203

RÉSUMÉ

To enhance the efficiency of catalysis, it is crucial to comprehend the behavior of individual nanowires/nanosheets. A developed on-chip microcell facilitates this study by creating a reaction window that exposes the catalyst region of interest. However, this technology's potential application is limited due to frequently-observed variations in data between different cells. In this study, we identify a conductance problem in the reaction windows of non-metallic catalysts as the cause of this issue. We investigate this problem using in-situ electronic/electrochemical measurements and atom-thin nanosheets as model catalysts. Our findings show that a full-open window, which exposes the entire catalyst channel, allows for efficient modulation of conductance, which is ten times higher than a half-open window. This often-overlooked factor has the potential to significantly improve the conductivity of non-metallic catalysts during the reaction process. After examining tens of cells, we develop a vertical microcell strategy to eliminate the conductance issue and enhance measurement reproducibility. Our study offers guidelines for conducting reliable microcell measurements on non-metallic single nanowire/nanosheet catalysts.

11.
Nat Commun ; 14(1): 6649, 2023 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-37863896

RÉSUMÉ

Dispersion decomposes compound light into its monochromatic components, which is detrimental to broadband imaging but advantageous for spectroscopic applications. Metasurfaces provide a unique path to modulate the dispersion by adjusting structural parameters on a two-dimensional plane. However, conventional linear phase compensation does not adequately match the meta-unit's dispersion characteristics with required complex dispersion, hindering at-will dispersion engineering over a very wide bandwidth particularly. Here, we propose an asymptotic phase compensation strategy for ultra-broadband dispersion-controlled metalenses. Metasurfaces with extraordinarily high aspect ratio nanostructures have been fabricated for arbitrary dispersion control in ultra-broad bandwidth, and we experimentally demonstrate the single-layer achromatic metalenses in the visible to infrared spectrum (400 nm~1000 nm, NA = 0.164). Our proposed scheme provides a comprehensive theoretical framework for single-layer meta-optics, allowing for arbitrary dispersion manipulation without bandwidth restrictions. This development is expected to have significant applications in ultra-broadband imaging and chromatography detection, among others.

12.
Small Methods ; : e2300792, 2023 Oct 06.
Article de Anglais | MEDLINE | ID: mdl-37802968

RÉSUMÉ

Emerging flexible and wearable electronic products are placing a compelling demand on lightweight transparent energy storage devices. Owing to their distinguishing features of safety, high specific energy, cycling stability, and rapid charge/discharge advantages, Zn-ion hybrid supercapacitors are a current topic of discussion. However, the trade-off for optical transmittance and energy density remains a great challenge. Here, a high-performance Zn-ion hybrid supercapacitor based on the customizable ultrathin (5 µm), ultralight (0.45 mg cm-2 ), and ultra-transparent (87.6%) Ni micromesh based cathode and Zn micromesh anode with the highest figure of merit (84 843) is proposed. The developed flexible transparent Zn-ion hybrid supercapacitors reveal excellent cycle stability (no decline after 20 000 cycles), high areal energy density (31.69 µWh cm-2 ), and high power density (512 µW cm-2 ). In addition, the assembled solid flexible and transparent Zn-ion hybrid supercapacitor with polyacrylamide gel electrolyte shows extraordinary mechanical properties even under extreme bending and twisting operation. Furthermore, the full device displays a high optical transmittance over 55.04% and can be conformally integrated with diverse devices as a flexible transparent power supply. The fabrication technology offers seamless compatibility with industrial manufacturing, making it an ideal model for the advancement of portable and wearable devices.

13.
ACS Appl Mater Interfaces ; 15(29): 35422-35429, 2023 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-37462178

RÉSUMÉ

Humidity sensing and water molecule monitoring have become hot research topics attributed to their potential applications in monitoring breathing/physiological conditions of humans, air conditioning in greenhouses, and soil moisture in agriculture. However, there is a huge challenge for highly sensitive and precision humidity detection with wireless and fast responsive capabilities. In this work, a hybrid/synergistic strategy was proposed using a LiNbO3/SiO2/SiC heterostructure to generate shear-horizontal (SH) surface acoustic waves (SAWs) and using a nanocomposite of polyethylenimine-silicon dioxide nanoparticles (PEI-SiO2 NPs) to form a sensitive layer, thus achieving an ultrahigh sensitivity of SAW humidity sensors. Ultrahigh frequencies (1∼15 GHz) of SAW devices were obtained on a high-velocity heterostructure of LiNbO3/SiO2/SiC. Among the multimodal wave modes, we selected SH waves for humidity sensing and achieved a high mass-sensitivity of 5383 MHz · mm2 · µg-1. With the PEI-SiO2 NP composite as the sensitive layer, an ultrahigh sensitivity of 2.02 MHz/% RH was obtained, which is two orders of magnitude higher than those of the conventional SAW humidity sensors (∼202.5 MHz frequency) within a humidity range of 20-80% RH.

14.
Adv Mater ; 35(38): e2303513, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37289041

RÉSUMÉ

Photolithographic techniques, which are widely used in the silicon-based semiconductor industry, enable the manufacture of high-yield and high-resolution features at the micrometer and nanometer scales. However, conventional photolithographic processes cannot accommodate the micro/nanofabrication of flexible and stretchable electronics. In this study, a microfabrication approach that uses a synthesized, environmentally friendly, and dry-transferable photoresist to enable the reliable conformal manufacturing of thin-film electronics is reported, which is also compatible with the existing cleanroom processes. Photoresists with high-resolution, high-density, and multiscale patterns can be transferred onto various substrates in a defect-free and conformal-contact manner, thus enabling multiple wafer reuses. Theoretical studies are conducted to investigate the damage-free peel-off mechanism of the proposed approach. The in situ fabrication of various electrical components, including ultralight and ultrathin biopotential electrodes, has been demonstrated, which offer lower interfacial impedance, durability, and stability, and the components are applied to collect electromyography signals with superior signal-to-noise ratio (SNR) and quality. Additionally, an exemplary demonstration of a human-machine interface indicates the potential of these electrodes in many emerging applications, including healthcare, sensing, and artificial intelligence.

15.
PNAS Nexus ; 2(6): pgad177, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37293376

RÉSUMÉ

Freezing phenomenon has troubled people for centuries, and efforts have been made to lower the liquid freezing temperature, raise the surface temperature, or mechanical deicing. Inspired by the elytra of beetle, we demonstrate a novel functional surface for directional penetration of liquid to reduce icing. The bionic functional surface is fabricated by projection microstereolithography (PµSL) based three dimensional printing technique with the wettability on its two sides tailored by TiO2 nanoparticle sizing agent. A water droplet penetrates from the hydrophobic side to the superhydrophilic side of such a bionic functional surface within 20 ms, but it is blocked in the opposite direction. Most significantly, the penetration time of a water droplet through such a bionic functional surface is much shorter than the freezing time on it, even though the temperature is as low as -90°C. This work opens a gate for the development of functional devices for liquid collection, condensation, especially for hyperantifogging/freezing.

16.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Article de Anglais | MEDLINE | ID: mdl-37299638

RÉSUMÉ

Seeking sensitive, large-scale, and low-cost substrates is highly important for practical applications of surface-enhanced Raman scattering (SERS) technology. Noble metallic plasmonic nanostructures with dense hot spots are considered an effective construction to enable sensitive, uniform, and stable SERS performance and thus have attracted wide attention in recent years. In this work, we reported a simple fabrication method to achieve wafer-scale ultradense tilted and staggered plasmonic metallic nanopillars filled with numerous nanogaps (hot spots). By adjusting the etching time of the PMMA (polymethyl methacrylate) layer, the optimal SERS substrate with the densest metallic nanopillars was obtained, which possessed a detection limit down to 10-13 M by using crystal violet as the detected molecules and exhibited excellent reproducibility and long-term stability. Furthermore, the proposed fabrication approach was further used to prepare flexible substrates; for example, a SERS flexible substrate was proven to be an ideal platform for analyzing low-concentration pesticide residues on curved fruit surfaces with significantly enhanced sensitivity. This type of SERS substrate possesses potential in real-life applications as low-cost and high-performance sensors.

17.
ACS Appl Mater Interfaces ; 15(23): 28349-28357, 2023 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-37256651

RÉSUMÉ

Crack lithography is important for preparing microstructured materials. This strategic use of cracking breaks with the traditional idea that cracks are unwanted and has great potential for high-resolution and high-throughput production. However, the ability to control nanoscale crack patterning is still insufficient. Here, we present a nanoscale, programmable angle-dependent technique to control crack generation that relies on standard electron-beam lithography. Multiscale patterns of poly(methyl methacrylate) of arbitrary shape, geometric size, and large area were obtained, greatly expanding the processing capacity of electron-beam lithography. In addition, we observed the interaction between adjacent structures and cracks, which resulted in crack suppression or second-order cracks. We also demonstrated that angle-dependent nanoscale cracks can be used in physical unclonable functions and have great application prospects in the field of information security. We believe that our strategy for programmable nanoscale crack patterning provides new opportunities and perspectives for nanofabrication.

18.
Opt Express ; 31(6): 10489-10499, 2023 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-37157594

RÉSUMÉ

Metalenses can achieve diffraction-limited focusing via localized phase modification of the incoming light beam. However, the current metalenses face to the restrictions on simultaneously achieving large diameter, large numerical aperture, broad working bandwidth and the structure manufacturability. Herein, we present a kind of metalenses composed of concentric nanorings that can address these restrictions using topology optimization approach. Compared to existing inverse design approaches, the computational cost of our optimization method is greatly reduced for large-size metalenses. With its design flexibility, the achieved metalens can work in the whole visible range with millimeter size and a numerical aperture of 0.8 without involving high-aspect ratio structures and large refractive index materials. Electron-beam resist PMMA with a low refractive index is directly used as the material of the metalens, enabling a much more simplified manufacturing process. Experimental results show that the imaging performance of the fabricated metalens has a resolution better than 600 nm corresponding to the measured FWHM of 745 nm.

19.
Adv Mater ; 35(26): e2212118, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36959164

RÉSUMÉ

Visual adaptation allows organisms to accurately perceive the external world even in dramatically changing environments, from dim starlight to bright sunlight. In particular, polarization-sensitive visual adaptation can effectively process the polarized visual information that is ubiquitous in nature. However, such an intriguing characteristic still remains a great challenge in semiconductor devices. Herein, a novel porous metal-organic-framework phototransistor with anisotropic-ReS2 -based heterojunction is demonstrated for polarization-sensitive visual adaptation emulation. The device exhibits intriguing polarized sensitivity and an adaptive ability due to its strong anisotropic and trapping-detrapping characteristics, respectively. A series of polarization-sensitive neuromorphic behaviors like polarization-perceptual excitatory postsynaptic current, multimode adjustable dichroic ratio and reconfigurable sensory adaption, are experimentally demonstrated through this porous heterojunction phototransistor. More importantly, with the polarization-electricity cooperation strategy, advanced polarization-sensitive visual adaptation with strong bottom-gate control and environment dependence is successfully realized. These results represent a significant step toward the new generation of intelligent visual perception systems in autonomous navigation and human-machine interaction, etc.

20.
Small ; 19(28): e2300734, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-36967553

RÉSUMÉ

Lithium metal batteries are promising to become a new generation of energy storage batteries. However, the growth of Li dendrites and the volume expansion of the anode are serious constraints to their commercial implementation. Herein, a controllable strategy is proposed to construct an ultrathin 3D hierarchical host of honeycomb copper micromesh loaded with lithiophilic copper oxide nanowires (CMMC). The uniquely designed 3D hierarchical arrayed skeletons demonstrate a surface-preferred and spatial-selective effect to homogenize local current density and relieve the volume expansion, effectively suppressing the dendrite growth. Employing the constructed CMMC current collector in a half-cell, >400 cycles with 99% coulombic efficiency at 0.5 mA cm-2 is performed. The symmetric battery cycles stably for >2000 h, and the full battery delivers a capacity of 166.6 mAh g-1 . This facile and controllable approach provides an effective strategy for constructing high-performance lithium metal batteries.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE