Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Am Chem Soc ; 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39110481

RÉSUMÉ

Starting from the dinickel(II) dihydride complex [ML(Ni-H)2] (1M), where L3- is a bis(tridentate) pyrazolate-bridged bis(ß-diketiminato) ligand and M+ is Na+ or K+, a series of complexes [KLNi2(S2)] (2K), [MLNi2S] (3M), [LNi2(SMe)] (4), and [LNi2(SH)] (5) has been prepared. The µ-sulfido complexes 3M can be reversibly oxidized at E1/2 = -1.17 V (in THF; vs Fc+/Fc) to give [LNi2(S•)] (6) featuring a bridging S-radical. 6 has been comprehensively characterized, including by X-ray diffraction, SQUID magnetometry, EPR and XAS/XES spectroscopies, and DFT calculations. The pKa of the µ-hydrosulfido complex 5 in THF is 30.8 ± 0.4, which defines a S-H bond dissociation free energy (BDFE) of 75.1 ± 1.0 kcal mol-1. 6 reacts with H atom donors such as TEMPO-H and xanthene to give 5, while 5 reacts with 2,4,6-tri(tert-butyl)phenoxy radical in a reverse H atom transfer to generate 6. These findings provide the first full characterization of a genuine M-(µ-S•-)-M complex and provide insights into its proton-coupled electron transfer (PCET) reactivity, which is of interest in view of the prominence of M-(µ-SH/µ-S)-M units in biological systems and heterogeneous catalysis.

2.
Molecules ; 29(14)2024 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-39065002

RÉSUMÉ

The metal-free porphyrins protonation has gained interest over five decades because its structure modification and hardly monoacid intermediate isolation. Here, upon the hydrogen atom abstraction processes, one step diproptonated H3STTP(BF4)2 (STTP = 5,10,15,20-tetraphenyl-21-thiaporphyrin) (3) and stepwise protonated HS2TTPSbCl6 (5) and diprotonated H2S2TTP(BF4)2 (6) (S2TTP = 5,10,15,20-tetraphenyl-21,23-thiaporphyrin) compounds were obtained using HSTTP and S2TTP with oxidants. The closed-shell protonated compounds were fully characterized using XRD, UV-vis, IR and NMR spectra. In addition, the reduced 19π compounds [K(2,2,2)]HSTTP (2) and [K(2,2,2)]S2TTP (7) were synthesized by the ligands with reductant KC8 in THF solution. These two open-shell compounds were characterized with UV-vis, IR and EPR spectroscopies. The semiempirical ZINDO/S method was employed to analyze the HOMO/LUMO gap lever and identify the electronic transitions of the UV-vis spectra of the closed- and open-shell porphyrin compounds.

3.
Inorg Chem ; 63(16): 7233-7240, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38588385

RÉSUMÉ

Reaction of tetraphenyl-21-thiaporphyrin (HSTPP) with cobalt salt yields a pentacoordinated high-spin 3/2 [CoIICl(STTP)] (1). Through ion exchange, a roughly square-planar-geometry low-spin 1/2 CoIISTTP(BArF24) (2) complex was isolated. These two paramagnetic precursors were examined by single X-ray diffraction, nuclear magnetic resonance, electron paramagnetic resonance, superconducting quantum interference device, and density functional theory calculations. These two allowed the development of one electron reduction and oxidation to give [CoI(STTP)] (3), [CoIII(STTP)Cl(CH3CN)](BF4) (4), and [CoIII(STTP)Cl2] (5). The products of the chemical redox reactions were isolated and fully characterized. In addition, the reactivity of [CoIICl(STTP)] (1) was examined by azide (N3), cyanate (OCN), and thiocyanate (SCN) and featured a preferential N-coordination to the cobalt metal.

4.
ACS Nano ; 18(4): 3161-3172, 2024 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-38227816

RÉSUMÉ

Designing and constructing supramolecular photosensitizer nanosystems with highly efficient photodynamic therapy (PDT) is vital in the nanomedical field. Despite recent advances in forming well-defined superstructures, the relationship between molecular arrangement in nanostructures and photodynamic properties has rarely been involved, which is crucial for developing stable photosensitizers for highly efficient PDT. In this work, through a microemulsion-assisted self-assembly approach, indium porphyrin (InTPP) was used to fabricate a series of morphology-controlled self-assemblies, including nanorods, nanospheres, nanoplates, and nanoparticles. They possessed structure-dependent 1O2 generation efficiency. Compared with the other three nanostructures, InTPP nanorods featuring strong π-π stacking, J-aggregation, and high crystallinity proved to be much more efficient at singlet oxygen (1O2) production. Also, theoretical modeling and photophysical experiments verified that the intermolecular π-π stacking in the nanorods could cause a decreased singlet-triplet energy gap (ΔEST) compared with the monomer. This played a key role in enhancing intersystem crossing and facilitating 1O2 generation. Both in vitro and in vivo experiments demonstrated that the InTPP nanorods could trigger cell apoptosis and tumor ablation upon laser irradiation (635 nm, 0.1 W/cm2) and exhibited negligible dark toxicity and high phototoxicity. Thus, the supramolecular self-assembly strategy provides an avenue for designing high-performance photosensitizer nanosystems for photodynamic therapy and beyond.


Sujet(s)
Nanostructures , Photothérapie dynamique , Porphyrines , Photosensibilisants/composition chimique , Porphyrines/pharmacologie , Porphyrines/composition chimique , Indium , Nanostructures/composition chimique , Oxygène singulet/composition chimique
5.
Nano Lett ; 22(1): 157-163, 2022 01 12.
Article de Anglais | MEDLINE | ID: mdl-34958579

RÉSUMÉ

The preparation of self-assembled porphyrins with orderly stacked nanostructures for emulating natural photosynthesis has stimulated extensive efforts to optimize the energy conversion efficiency. However, the elucidation of how orderly stacked structures promote photocatalysis at the molecular level remains a great challenge. Here, unique porphyrin nanoleaves with designed and ordered structure are synthesized and show a hydrogen evolution rate higher than that of commercial powder. Photodeposition of cocatalysts and Kelvin probe force microscopy measurement suggest selective aggregation of photogenerated electrons and holes at different active sites. Combined with theoretical calculations, we find that the orderly packing changes molecular symmetry and induces a molecular dipole, which increases linearly along the π-π stacking direction and forms a strong built-in electric field. The built-in electric field drives photogenerated electrons and holes for the unique crossed transportation along different directions. These findings reveal how orderly stacked structures promote photocatalysis and provide a novel approach for highly efficient water splitting.


Sujet(s)
Nanostructures , Porphyrines , Catalyse , Hydrogène/composition chimique , Nanostructures/composition chimique , Photosynthèse , Porphyrines/composition chimique
6.
Angew Chem Int Ed Engl ; 60(4): 1891-1896, 2021 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-33026170

RÉSUMÉ

The dinickel(II) dihydride complex (1K ) of a pyrazolate-based compartmental ligand with ß-diketiminato (nacnac) chelate arms (L- ), providing two pincer-type {N3 } binding pockets, has been reported to readily eliminate H2 and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2Na , 2K ) of L- are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state. The two singly occupied local d x 2 - y 2 type magnetic orbitals are oriented into the bimetallic cleft, enabling metal-metal cooperative 2 e- substrate reductions as shown by the rapid reaction with H2 or O2 . X-ray crystallography reveals distinctly different positions of the K+ in 1K and 2K , suggesting a stabilizing interaction of K+ with the dihydride unit in 1K . H2 release from 1K is triggered by peripheral γ-C protonation at the nacnac subunits, which DFT calculations show lowers the barrier for reductive H2 elimination from the bimetallic cleft.

7.
J Am Chem Soc ; 142(14): 6717-6728, 2020 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-32163715

RÉSUMÉ

Nickel(I) metalloradicals bear great potential for the reductive activation of challenging substrates but are often too unstable to be isolated. Similar chemistry may be enabled by nickel(II) hydrides that store the reducing equivalents in hydride bonds and reductively eliminate H2 upon substrate binding. Here we present a pyrazolate-based bis(ß-diketiminato) ligand [LPh]3- with bulky m-terphenyl substituents that can host two Ni-H units in close proximity. Complexes [LPh(NiII-H)2]- (3) are prone to intramolecular reductive H2 elimination, and an equilibrium between 3 and orthometalated dinickel(II) monohydride complexes 2 is evidenced. 2 is shown to form via intramolecular metal-metal cooperative phenyl group C(sp2)-H oxidative addition to the dinickel(I) intermediate [LPhNiI2]- (4). While NiI species have been implicated in catalytic C-H functionalization, discrete activation of C-H bonds at NiI complexes has rarely been described. The reversible H2 and C-H reductive elimination/oxidative addition equilibrium smoothly unmasks the powerful 2-electron reductant 4 from either 2 or 3, which is demonstrated by reaction with benzaldehyde. A dramatic cation effect is observed for the rate of interconversion of 2 and 3 and also for subsequent thermally driven formation of a twice orthometalated dinickel(II) complex 6. X-ray crystallographic and NMR titration studies indicate distinct interaction of the Lewis acidic cation with 2 and 3. The present system allows for the unmasking of a highly reactive [LPhNiI2]- intermediate 4 either via elimination of H2 from dihydride 3 or via reductive C-H elimination from monohydride 2. The latter does not release any H2 byproduct and adds a distinct platform for metal-metal cooperative two-electron substrate reductions while circumventing the isolation of any unstable superreduced form of the bimetallic scaffold.

8.
J Am Chem Soc ; 140(14): 4929-4939, 2018 04 11.
Article de Anglais | MEDLINE | ID: mdl-29595258

RÉSUMÉ

Dioxygen activation at nickel complexes is much less studied than for the biologically more relevant iron or copper systems but promises new reactivity patterns because of the distinct coordination chemistry of nickel. Here we report that a pyrazolate-based dinickel(II) dihydride complex [KL(Ni-H)2] (1a) smoothly reacts with O2 via reductive H2 elimination to give the µ-1,2-peroxo dinickel(II) complex [KLNi2(O2)] (2a) and, after treatment with dibenzo[18]-crown-6, the separated ion pair [K(DB18C6)][LNi2(O2)] (2b); these are the first µ-1,2-peroxo dinickel intermediates to be characterized by X-ray diffraction. In 2a, the K+ is found side-on associated with the peroxo unit, revealing a pronounced weaking of the O-O bond: d(O-O) = 1.482(2) Å in 2a versus 1.465(2) in 2b; ν̃(O-O) = 720 cm-1 in 2a versus 755 cm-1 in 2b. Reaction of 1a (or 2a/2b) with an excess of O2 cleanly leads to [LNi2(O2)] (3), which was shown by X-ray crystallography ( d(O-O) = 1.326(2) Å), electron paramagnetic resonance and Raman spectroscopy (ν̃(O-O) = 1007 cm-1), magnetic measurements, and density functional theory calculations to feature two low-spin d8 nickel(II) ions and a genuine µ-1,2-superoxo ligand with the unpaired electron in the out-of-plane π*O-O orbital. These µ-1,2-superoxo and µ-1,2-peroxo species, all containing the O2-derived unit within the cleft of the dinickel(II) core, can be reversibly interconverted chemically and also electrochemically at very low potential ( E1/2 = -1.22 V vs Fc/Fc+). Initial reactivity studies indicate that protonation of 2a, or reaction of 3 with TEMPO-H, ultimately gives the µ-hydroxo dinickel(II) complex [LNi2(µ-OH)] (4). This work provides an entire new series of closely related and unusually rugged Ni2/O2 intermediates, avoiding the use of unstable nickel(I) precursors but storing the redox equivalents for reductive O2-binding in nickel(II) hydride bonds.

9.
J Am Chem Soc ; 139(46): 16720-16731, 2017 11 22.
Article de Anglais | MEDLINE | ID: mdl-29037034

RÉSUMÉ

A compartmental ligand scaffold HL with two ß-diketiminato binding sites spanned by a pyrazolate bridge gave a series of dinuclear nickel(II) dihydride complexes M[LNi2(H)2], M = Na (Na·2) and K (K·2), which were isolated after reacting the precursor complex [LNi2(µ-Br)] (1) with MHBEt3 (M = Na and K). Crystallographic characterization showed the two hydride ligands to be directed into the bimetallic pocket, closely interacting with the alkali metal cation. Treatment of K·2 with dibenzo(18-crown-6) led to the separated ion pair [LNi2(H)2][K(DB18C6)] (2[K(DB18C6)]). Reaction of Na·2 or K·2 with D2 was investigated by a suite of 1H and 2H NMR experiments, revealing an unusual pairwise H2/D2 exchange process that synchronously involves both Ni-H moieties without H/D scrambling. A mechanistic picture was provided by DFT calculations which suggested facile recombination of the two terminal hydrides within the bimetallic cleft, with a moderate enthalpic barrier of ∼62 kJ/mol, to give H2 and an antiferromagnetically coupled [LNiI2]- species. This was confirmed by SQUID monitoring during H2 release from solid 2[K(DB18C6)]. Interaction with the Lewis acid cation (Na+ or K+) significantly stabilizes the dihydride core. Kinetic data for the M[L(Ni-H)2] → H2 transition derived from 2D 1H EXSY spectra confirmed first-order dependence of H2 release on M·2 concentration and a strong effect of the alkali metal cation M+. Treating [LNi2(D)2]- with phenylacetylene led to D2 and dinickel(II) complex 3- with a twice reduced styrene-1,2-diyl bridging unit in the bimetallic pocket. Complexes [LNiII2(H)2]- having two adjacent terminal hydrides thus represent a masked version of a highly reactive dinickel(I) core. Storing two reducing equivalents in adjacent metal hydrides that evolve H2 upon substrate binding is reminiscent of the proposed N2 binding step at the FeMo cofactor of nitrogenase, suggesting the use of the present bimetallic scaffold for reductive bioinspired activation of a range of inert small molecules.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(2): 571-6, 2017 Feb.
Article de Chinois | MEDLINE | ID: mdl-30291820

RÉSUMÉ

The reflectance of saline soil in the downstream of No.500 reservoir in Fukang, Xinjiang province was investigated. Through filed sampling and spectral test, using the method of spectral transform, correlation analysis and a quantitative analysis were conducted on the salt and water content of the soil under different disturbance degree. A multiple linear regression model was established between the soil reflectance and soil salinity content. The results show that: first, the human disturbance has a significantly positive correlation with the soil content while it has an extremely negative correlation with the water content. The correlation coefficients are 0.961 and -0.929 respectively. Secondly, it shows that those most heavily disturbed soil reflectance is about 10%higher than the slightly disturbed, while the slightly disturbed soil reflectance is about 17% higher than the undisturbed soil. The reason is that the soil surface of barren land with a small amount of vegetation, the biological creature and soil surface crust have been destroyed. The more the disturbance is, the greater chance the surface layer would be destroyed. Meanwhile, the surface layer of soil will be lack of the crust protective; the soil salinity of the bottom rises to the surface associated with the soil moisture will quickly evaporate. The salt is concentrated to the surface layer due to both little precipitation and a lack of protection of soil crust. Thirdly, the peak wavelength location of the spectrum is increased (999, 876~979, 1 182~1 370, 1 900 nm) while the soil is taken from undisturbed to heavily disturbed conditions, which means that with the increase of disturbance, the soil becomes more sensitive in the near infrared region. What's more, the three different prediction models are established though the reflectance R, the reflectivity of the first derivative R', the reflectance R+water. According to the R(2) and the RMSE to comprehensive judge the accuracy of the model. It is found that among those established prediction models of the same soil salinity in the different levels of disturbance, the smaller the degree of human disturbance is, the higher the accuracy of model is. It is found that among all of those established prediction models, the one based on the derivative of R works the best, of which R(2) is larger than 0.983, model accuracy is improved by 5%~10% ,which means that through a derivative transformation, the linear noises in the original spectrum can be removed.

11.
Huan Jing Ke Xue ; 37(7): 2419-2427, 2016 Jul 08.
Article de Chinois | MEDLINE | ID: mdl-29964446

RÉSUMÉ

In order to investigate the influence of meteorological factors on the variation characteristics of PM2.5 in Beijing. According to the survey of PM2.5 mass concentration in height of human respiration, humidity, the direction of the wind, wind speed and temperature. Using the methods of correlation analysis and nonlinear regression analysis, the effects of meteorological factors on the formation and variation of PM2.5 mass concentration in light and moderate air pollution days and heavy pollution were discussed respectively. The results showed that:① On mild to moderate pollution days, if the temperature was low, the daily average wind speed was low, the humidity was high, then the humidity was the decisive influencing factor of PM2.5 mass concentration; if the temperature, wind speed and humidity were all high, then the variation of PM2.5 mass concentration was influenced by the combined action of these three; when the temperature, humidity and wind speed were all low, then the PM2.5 mass concentration was mainly affected by the first two factors. This suggested that changes in the height of the human respiration PM2.5 mass concentrations were extremely sensitive to small changes in meteorological factors; ② During the process of air quality turning from good to heavily polluted, the accumulation of PM2.5 mass concentration was mainly due to the weak air turbulence, coupled with the high humidity, in addition, the northwest wind and northeast wind were larger during the daytime but the duration was shorter, while the southeast and southwest wind speed at night was lower with longer duration, which was conducive to pollutant accumulation;③ Short-term low amount of snow decreased the temperature and increased the air humidity, which not only could not reduce the PM2.5 mass concentration, but rather increased it by 72%, resulting in the jump phenomenon of particle concentration; ④ When the wind speed reached up to 2.0 m·s-1 and lasted for two hours, the local PM2.5 mass concentrations could be reduced to some extent, but it could not completely change the air quality situation. Only when the wind speed was greater than 3.5 m·s-1 and lasted for more than 4 hours, the fine particulate matter in the air could be quickly diffused and the air quality was changed from heavy pollution to excellent.


Sujet(s)
Polluants atmosphériques/analyse , Surveillance de l'environnement , Temps (météorologie) , Pékin , Chine , Humains , Matière particulaire/analyse , Saisons , Vent
12.
Dalton Trans ; 42(42): 14951-4, 2013 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-24030812

RÉSUMÉ

Two neutral hexanuclear trigonal prismatic cage molecules have been synthesized by coupling two planar triangular M3pz3-panels, M = Cu(I) and Ag(I), in eclipsed geometry. The ~230 Å(3) cage volume can be either vacant or occupied by neutral guests. The crystal structures of the M6-cyclohexane and Ag6-S8 host-guest species have been determined.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE