Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 36
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Br J Pharmacol ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38922847

RÉSUMÉ

BACKGROUND AND PURPOSE: Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH: We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS: Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS: Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.

2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38473769

RÉSUMÉ

The aim of this study was to investigate the comparative antiseizure activity of the l-enantiomers of d,l-fenfluramine and d,l-norfenfluramine and to evaluate the relationship between their concentration in plasma and brain and anticonvulsant activity. d,l-Fenfluramine, d,l-norfenfluramine and their individual enantiomers were evaluated in the mouse maximal electroshock seizure (MES) test. d,l-Fenfluramine, d,l-norfenfluramine and their individual l-enantiomers were also assessed in the DBA/2 mouse audiogenic seizure model. All compounds were administered intraperitoneally. Brain and plasma concentrations of the test compounds in DBA/2 mice were quantified and correlated with anticonvulsant activity. In the MES test, fenfluramine, norfenfluramine and their enantiomers showed comparable anticonvulsant activity, with ED50 values between 5.1 and 14.8 mg/kg. In the audiogenic seizure model, l-norfenfluramine was 9 times more potent than d,l-fenfluramine and 15 times more potent than l-fenfluramine based on ED50 (1.2 vs. 10.2 and 17.7 mg/kg, respectively). Brain concentrations of all compounds were about 20-fold higher than in plasma. Based on brain EC50 values, l-norfenfluramine was 7 times more potent than d,l-fenfluramine and 13 times more potent than l-fenfluramine (1940 vs. 13,200 and 25,400 ng/g, respectively). EC50 values for metabolically formed d,l-norfenfluramine and l-norfenfluramine were similar to brain EC50 values of the same compounds administered as such, suggesting that, in the audiogenic seizure model, the metabolites were responsible for the antiseizure activity of the parent compounds. Because of the evidence linking d-norfenfluramine to d,l-fenfluramine to cardiovascular and metabolic adverse effects, their l-enantiomers could potentially be safer follow-up compounds to d,l-fenfluramine. We found that, in the models tested, the activity of l-fenfluramine and l-norfenfluramine was comparable to that of the corresponding racemates. Based on the results in DBA/2 mice and other considerations, l-norfenfluramine appears to be a particularly attractive candidate for further evaluation as a novel, enantiomerically pure antiseizure medication.


Sujet(s)
Épilepsie réflexe , Fenfluramine , Souris , Animaux , Norfenfluramine/métabolisme , Anticonvulsivants , Études de suivi , Souris de lignée DBA , Crises épileptiques
3.
Elife ; 112022 03 02.
Article de Anglais | MEDLINE | ID: mdl-35234610

RÉSUMÉ

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Sujet(s)
Épilepsie , Canal sodique voltage-dépendant NAV1.6 , Animaux , Mutation gain de fonction , Souris , Mutation , Canal sodique voltage-dépendant NAV1.6/génétique , Neurones/physiologie , Rats , Sodium , Bloqueurs de canaux sodiques/pharmacologie
4.
eNeuro ; 6(6)2019.
Article de Anglais | MEDLINE | ID: mdl-31685676

RÉSUMÉ

The role of neuroinflammation in the mechanisms of epilepsy development is important because inflammatory mediators provide tractable targets for intervention. Inflammation is intrinsically involved in the generation of childhood febrile seizures (FSs), and prolonged FS [febrile status epilepticus (FSE)] precedes a large proportion of adult cases of temporal lobe epilepsy (TLE). As TLE is often refractory to therapy and is associated with serious cognitive and emotional problems, we investigated whether its development can be prevented using anti-inflammatory strategies. Using an immature rat model of FSE [experimental FSE (eFSE)], we administered dexamethasone (DEX), a broad anti-inflammatory agent, over 3 d following eFSE. We assessed eFSE-provoked hippocampal network hyperexcitability by quantifying the presence, frequency, and duration of hippocampal spike series, as these precede and herald the development of TLE-like epilepsy. We tested whether eFSE provoked hippocampal microgliosis, astrocytosis, and proinflammatory cytokine production in male and female rats and investigated blood-brain barrier (BBB) breaches as a potential contributor. We then evaluated whether DEX attenuated these eFSE sequelae. Spike series were not observed in control rats given vehicle or DEX, but occurred in 41.6% of eFSE-vehicle rats, associated with BBB leakage and elevated hippocampal cytokines. eFSE did not induce astrocytosis or microgliosis but provoked BBB disruption in 60% of animals. DEX significantly reduced spike series prevalence (to 7.6%) and frequency, and abrogated eFSE-induced cytokine production and BBB leakage (to 20%). These findings suggest that a short, postinsult intervention with a clinically available anti-inflammatory agent potently attenuates epilepsy-predicting hippocampal hyperexcitability, potentially by minimizing BBB disruption and related neuroinflammation.


Sujet(s)
Anti-inflammatoires/pharmacologie , Dexaméthasone/pharmacologie , Hippocampe/effets des médicaments et des substances chimiques , Crises convulsives fébriles/traitement médicamenteux , État de mal épileptique/traitement médicamenteux , Animaux , Anti-inflammatoires/usage thérapeutique , Barrière hémato-encéphalique/effets des médicaments et des substances chimiques , Barrière hémato-encéphalique/métabolisme , Barrière hémato-encéphalique/physiopathologie , Cytokines/métabolisme , Dexaméthasone/usage thérapeutique , Modèles animaux de maladie humaine , Femelle , Hippocampe/métabolisme , Hippocampe/physiopathologie , Mâle , Rats , Crises convulsives fébriles/métabolisme , Crises convulsives fébriles/physiopathologie , État de mal épileptique/métabolisme , État de mal épileptique/physiopathologie
5.
Epilepsia ; 59(11): 2005-2018, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30256385

RÉSUMÉ

OBJECTIVE: A subset of children with febrile status epilepticus (FSE) are at risk for development of temporal lobe epilepsy later in life. We sought a noninvasive predictive marker of those at risk that can be identified soon after FSE, within a clinically realistic timeframe. METHODS: Longitudinal T2 -weighted magnetic resonance imaging (T2 WI MRI) of rat pups at several time points after experimental FSE (eFSE) was performed on a high-field scanner followed by long-term continuous electroencephalography. In parallel, T2 WI MRI scans were performed on a 3.0-T clinical scanner. Finally, chronic T2 WI MRI signal changes were examined in rats that experienced eFSE and were imaged months later in adulthood. RESULTS: Epilepsy-predicting T2 changes, previously observed at 2 hours after eFSE, persisted for at least 6 hours, enabling translation to the clinic. Repeated scans, creating MRI trajectories of T2 relaxation times following eFSE, provided improved prediction of epileptogenesis compared with a single MRI scan. Predictive signal changes centered on limbic structures, such as the basolateral and medial amygdala. T2 WI MRI changes, originally described on high-field scanners, can also be measured on clinical MRI scanners. Chronically elevated T2 relaxation times in hippocampus were observed months after eFSE in rats, as noted for post-FSE changes in children. SIGNIFICANCE: Early T2 WI MRI changes after eFSE provide a strong predictive measure of epileptogenesis following eFSE, on both high-field and clinical MRI scanners. Importantly, the extension of the acute signal changes to at least 6 hours after the FSE enables its inclusion in clinical studies. Chronic elevations of T2 relaxation times within the hippocampal formation and related structures are common to human and rodent FSE, suggesting that similar processes are involved across species.


Sujet(s)
Encéphale/imagerie diagnostique , Encéphale/croissance et développement , Évolution de la maladie , Traitement d'image par ordinateur , Imagerie par résonance magnétique/méthodes , État de mal épileptique/imagerie diagnostique , Animaux , Animaux nouveau-nés , Modèles animaux de maladie humaine , Électroencéphalographie , Femelle , Fièvre/complications , Mâle , Courbe ROC , Rats , Rat Sprague-Dawley , État de mal épileptique/étiologie , Facteurs temps
6.
Cell Rep ; 14(10): 2402-12, 2016 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-26947066

RÉSUMÉ

Insult-provoked transformation of neuronal networks into epileptic ones involves multiple mechanisms. Intervention studies have identified both dysregulated inflammatory pathways and NRSF-mediated repression of crucial neuronal genes as contributors to epileptogenesis. However, it remains unclear how epilepsy-provoking insults (e.g., prolonged seizures) induce both inflammation and NRSF and whether common mechanisms exist. We examined miR-124 as a candidate dual regulator of NRSF and inflammatory pathways. Status epilepticus (SE) led to reduced miR-124 expression via SIRT1--and, in turn, miR-124 repression--via C/EBPα upregulated NRSF. We tested whether augmenting miR-124 after SE would abort epileptogenesis by preventing inflammation and NRSF upregulation. SE-sustaining animals developed epilepsy, but supplementing miR-124 did not modify epileptogenesis. Examining this result further, we found that synthetic miR-124 not only effectively blocked NRSF upregulation and rescued NRSF target genes, but also augmented microglia activation and inflammatory cytokines. Thus, miR-124 attenuates epileptogenesis via NRSF while promoting epilepsy via inflammation.


Sujet(s)
Réseaux de régulation génique , microARN/métabolisme , Protéines de répression/métabolisme , Régions 3' non traduites/génétique , Animaux , Protéines liant les séquences stimulatrices de type CCAAT/métabolisme , Immunoprécipitation de la chromatine , Cytokines/génétique , Cytokines/métabolisme , Agonistes des acides aminés excitateurs/pharmacologie , Réseaux de régulation génique/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Acide kaïnique/pharmacologie , Souris , microARN/antagonistes et inhibiteurs , microARN/génétique , Oligonucléotides antisens/métabolisme , ARN messager/métabolisme , Rats , Rat Sprague-Dawley , Réaction de polymérisation en chaine en temps réel , Protéines de répression/composition chimique , Protéines de répression/génétique , Sirtuine-1/métabolisme , État de mal épileptique/génétique , État de mal épileptique/anatomopathologie
7.
Exp Neurol ; 269: 242-52, 2015 Jul.
Article de Anglais | MEDLINE | ID: mdl-25939697

RÉSUMÉ

Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern.


Sujet(s)
Encéphale/anatomopathologie , Cognition/physiologie , Traitement d'image par ordinateur , Troubles de la mémoire/anatomopathologie , État de mal épileptique/anatomopathologie , Animaux , Encéphale/croissance et développement , Encéphale/physiopathologie , Humains , Mémoire/physiologie , Troubles de la mémoire/diagnostic , Troubles de la mémoire/physiopathologie , Rats , État de mal épileptique/diagnostic , État de mal épileptique/physiopathologie
8.
Neurobiol Stress ; 2: 10-19, 2015.
Article de Anglais | MEDLINE | ID: mdl-25884016

RÉSUMÉ

Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to 'brain programming', influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.

9.
eNeuro ; 2(5)2015.
Article de Anglais | MEDLINE | ID: mdl-26730400

RÉSUMÉ

Epilepsy is a common neurological disorder with many causes. For temporal lobe epilepsy, antecedent insults are typically found. These risk factors include trauma or history of long fever-associated seizures (febrile status epilepticus) in childhood. Whereas the mechanisms by which such insults promote temporal lobe epilepsy are unknown, an extensive body of work has implicated inflammation and inflammatory mediators in both human and animal models of the disorder. However, direct evidence for an epileptogenic role for inflammation is lacking. Here we capitalized on a model where only a subgroup of insult-experiencing rodents develops epilepsy. We reasoned that if inflammation was important for generating epilepsy, then early inflammation should be more prominent in individuals destined to become epileptic compared with those that will not become epileptic. In addition, the molecular and temporal profile of inflammatory mediators would provide insights into which inflammatory pathways might be involved in the disease process. We examined inflammatory profiles in hippocampus and amygdala of individual rats and correlated them with a concurrent noninvasive, amygdalar magnetic resonance imaging epilepsy-predictive marker. We found significant individual variability in the expression of several important inflammatory mediators, but not in others. Of interest, a higher expression of a subset of hippocampal and amygdalar inflammatory markers within the first few hours following an insult correlated with the epilepsy-predictive signal. These findings suggest that some components of the inflammatory gene network might contribute to the process by which insults promote the development of temporal lobe epilepsy.


Sujet(s)
Amygdale (système limbique)/immunologie , Hippocampe/immunologie , Crises convulsives fébriles/immunologie , État de mal épileptique/immunologie , Amygdale (système limbique)/anatomopathologie , Animaux , Astrocytes/immunologie , Astrocytes/anatomopathologie , Technique de Western , Modèles animaux de maladie humaine , Évolution de la maladie , Femelle , Protéine HMGB1/métabolisme , Hippocampe/anatomopathologie , Immunohistochimie , Interleukine-1 bêta/métabolisme , Imagerie par résonance magnétique , Mâle , Microglie/immunologie , Microglie/anatomopathologie , Neurones/immunologie , Neurones/anatomopathologie , Réaction de polymérisation en chaîne , ARN messager/métabolisme , Rat Sprague-Dawley , Crises convulsives fébriles/anatomopathologie , État de mal épileptique/anatomopathologie
10.
Elife ; 3: e01267, 2014 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-25117540

RÉSUMÉ

The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts.


Sujet(s)
Régulation de l'expression des gènes , Protéines de tissu nerveux/génétique , ARN messager/génétique , Protéines de répression/génétique , Crises épileptiques/génétique , Transcription génétique , Animaux , Transport biologique , Chromatine/composition chimique , Chromatine/métabolisme , Analyse de profil d'expression de gènes , Hippocampe/métabolisme , Hippocampe/physiopathologie , Mâle , Microtomie , Protéines de tissu nerveux/métabolisme , Neurones/métabolisme , Neurones/anatomopathologie , ARN messager/métabolisme , Rats , Rat Sprague-Dawley , Protéines de répression/métabolisme , Crises épileptiques/métabolisme , Crises épileptiques/physiopathologie , Transduction du signal , Techniques de culture de tissus
11.
J Neurosci ; 34(26): 8672-84, 2014 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-24966369

RÉSUMÉ

A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.


Sujet(s)
Encéphale/physiopathologie , Électroencéphalographie/méthodes , Épilepsie/diagnostic , Imagerie par résonance magnétique/méthodes , Crises convulsives fébriles/complications , État de mal épileptique/complications , Animaux , Marqueurs biologiques , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Épilepsie/étiologie , Épilepsie/anatomopathologie , Épilepsie/physiopathologie , Rats , Rat Sprague-Dawley , Crises convulsives fébriles/anatomopathologie , Crises convulsives fébriles/physiopathologie , État de mal épileptique/anatomopathologie , État de mal épileptique/physiopathologie
12.
Epilepsy Curr ; 14(1 Suppl): 15-22, 2014 Jan.
Article de Anglais | MEDLINE | ID: mdl-24955071

RÉSUMÉ

Febrile seizures (FS) are the most common type of seizures in infants and preschool children. Inflammatory mediators, which are known triggers of fever, have also been implicated as contributors to the onset of these seizures. Evidence that inflammation is present following FS and during established epilepsy suggests that it could also influence epileptogenesis. However, the potential involvement of inflammatory mediators to the epileptogenic process that may follow prolonged FS has yet to be fully determined. This article reviews the current state of our knowledge and major gaps that remain by focusing on four questions: Does inflammation contribute to the generation of FS? Does prolonged FS or febrile status epilepticus (SE) cause temporal lobe epilepsy in the absence of predisposing factors? Does inflammation contribute to the process by which febrile SE causes limbic epilepsy? And finally, can inflammation be a foundation for biomarkers and therapy for FS-induced epileptogenesis?

13.
Ann Neurol ; 70(3): 454-64, 2011 Sep.
Article de Anglais | MEDLINE | ID: mdl-21905079

RÉSUMÉ

OBJECTIVE: Enduring, abnormal expression and function of the ion channel hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) occurs in temporal lobe epilepsy (TLE). We examined the underlying mechanisms, and investigated whether interfering with these mechanisms could modify disease course. METHODS: Experimental TLE was provoked by kainic acid-induced status epilepticus (SE). HCN1 channel repression was examined at mRNA, protein, and functional levels. Chromatin immunoprecipitation was employed to identify the transcriptional mechanism of repressed HCN1 expression, and the basis for their endurance. Physical interaction of the repressor, NRSF, was abolished using decoy oligodeoxynucleotides (ODNs). Video/electroencephalographic recordings were performed to assess the onset and initial pattern of spontaneous seizures. RESULTS: Levels of NRSF and its physical binding to the Hcn1 gene were augmented after SE, resulting in repression of HCN1 expression and HCN1-mediated currents (I(h) ), and reduced I(h) -dependent resonance in hippocampal CA1 pyramidal cell dendrites. Chromatin changes typical of enduring, epigenetic gene repression were apparent at the Hcn1 gene within a week after SE. Administration of decoy ODNs comprising the NRSF DNA-binding sequence (neuron restrictive silencer element [NRSE]), in vitro and in vivo, reduced NRSF binding to Hcn1, prevented its repression, and restored I(h) function. In vivo, decoy NRSE ODN treatment restored theta rhythm and altered the initial pattern of spontaneous seizures. INTERPRETATION: Acquired HCN1 channelopathy derives from NRSF-mediated transcriptional repression that endures via chromatin modification and may provide insight into the mechanisms of a number of channelopathies that coexist with, and may contribute to, the conversion of a normal brain into an epileptic one.


Sujet(s)
Canalopathies/physiopathologie , Canaux cationiques contrôlés par les nucléotides cycliques/physiologie , Épilepsie temporale/physiopathologie , Nucléotides cycliques/métabolisme , Canaux potassiques/physiologie , Protéines de répression/physiologie , Animaux , Région CA1 de l'hippocampe/anatomopathologie , Canalopathies/génétique , Canalopathies/métabolisme , Chromatine/anatomopathologie , Canaux cationiques contrôlés par les nucléotides cycliques/génétique , Dendrites/anatomopathologie , Épilepsie temporale/induit chimiquement , Épilepsie temporale/métabolisme , Agonistes des acides aminés excitateurs , Expression des gènes/génétique , Expression des gènes/physiologie , Hippocampe/anatomopathologie , Canaux contrôlés par les nucléotides cycliques et activés par l'hyperpolarisation , Ouverture et fermeture des portes des canaux ioniques/physiologie , Acide kaïnique , Mâle , Canaux potassiques/génétique , Rats , Rat Wistar , Protéines de répression/antagonistes et inhibiteurs , État de mal épileptique/induit chimiquement , État de mal épileptique/métabolisme , État de mal épileptique/physiopathologie
14.
Neurosci Lett ; 497(3): 155-62, 2011 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-21356275

RÉSUMÉ

Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE.


Sujet(s)
Marqueurs biologiques/métabolisme , Encéphale/physiopathologie , Crises convulsives fébriles/physiopathologie , Crises convulsives fébriles/thérapie , Crises épileptiques/physiopathologie , Crises épileptiques/thérapie , Animaux , Humains , Crises épileptiques/étiologie , Crises convulsives fébriles/complications
15.
Epilepsia ; 52(1): 179-84, 2011 Jan.
Article de Anglais | MEDLINE | ID: mdl-21219304

RÉSUMÉ

A missense mutation (R43Q) in the γ2 subunit of the γ-aminobutyric acid (GABA)(A) receptor is associated with generalized (genetic) epilepsy with febrile seizures plus (GEFS+). Heterozygous GABA(A) γ2(R43Q) mice displayed a lower temperature threshold for thermal seizures as compared to wild-type littermates. Temperature-dependent internalization of GABA(A) γ2(R43Q)-containing receptors has been proposed as a mechanism underlying febrile seizure genesis in patients with this mutation. We tested this idea using the GABA(A) γ2(R43Q) knockin mouse model and analyzed GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in acute brain slices after exposure to varying temperatures. Incubation of slices at an elevated temperature increased mIPSC amplitude in neurons from heterozygous mice, with no change seen in wild-type controls. [³H]Flumazenil binding measured in whole-brain homogenates from mutant and control mice following elevation of body temperature showed no temperature-dependent differences in γ2-containing receptor density. Therefore, in vivo mouse data do not support earlier in vitro observations that proposed temperature-dependent internalization of γ2 R43Q containing GABA(A) receptors as the cellular mechanism underlying febrile seizure genesis in patients with the GABA(A) γ2(R43Q) mutation.


Sujet(s)
Température du corps/physiologie , Modèles animaux de maladie humaine , Épilepsie généralisée/physiopathologie , Potentiels post-synaptiques inhibiteurs/physiologie , Inhibition nerveuse/physiologie , Récepteurs GABA-A/physiologie , Crises convulsives fébriles/physiopathologie , Animaux , Température du corps/génétique , Cortex cérébral/physiologie , Épilepsie généralisée/génétique , Techniques de knock-in de gènes , Potentiels post-synaptiques inhibiteurs/génétique , Souris , Souris transgéniques , Crises convulsives fébriles/génétique
16.
J Neurosci ; 30(39): 13005-15, 2010 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-20881118

RÉSUMÉ

Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF(1)) located on pyramidal cell dendrites. Additionally, chronic CRF(1) occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH expression is augmented in hippocampus of middle-aged CES rats, and then tested whether the morphological defects and poor memory performance in these animals involve excessive activation of CRF(1) receptors. Central or peripheral administration of a CRF(1) blocker following the stress period improved memory performance of CES rats in novel-object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF(1) interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF(1) occupancy post hoc normalized hippocampal function during middle age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress.


Sujet(s)
Troubles de la cognition/métabolisme , Corticolibérine/métabolisme , Hippocampe/métabolisme , Neurones/métabolisme , Récepteur CRH/métabolisme , Stress psychologique/métabolisme , Animaux , Animaux nouveau-nés , Maladie chronique , Troubles de la cognition/physiopathologie , Modèles animaux de maladie humaine , Femelle , Hippocampe/physiopathologie , Humains , Mâle , Souris , Souris transgéniques , Neurones/anatomopathologie , Techniques de culture d'organes , Rats , Rat Sprague-Dawley , Récepteur CRH/antagonistes et inhibiteurs , Récepteur CRH/physiologie , Stress psychologique/physiopathologie
17.
Proc Natl Acad Sci U S A ; 107(29): 13123-8, 2010 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-20615973

RÉSUMÉ

Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.


Sujet(s)
Corticolibérine/métabolisme , Épines dendritiques/anatomopathologie , Hippocampe/physiopathologie , Mémoire/physiologie , Transduction du signal , Stress psychologique/physiopathologie , Animaux , Cognition/physiologie , Potentialisation à long terme/physiologie , Mâle , Souris , Stress psychologique/métabolisme , Synapses/anatomopathologie , Facteurs temps
18.
J Neurosci ; 30(22): 7484-94, 2010 Jun 02.
Article de Anglais | MEDLINE | ID: mdl-20519523

RÉSUMÉ

Whether long febrile seizures (FSs) can cause epilepsy in the absence of genetic or acquired predisposing factors is unclear. Having established causality between long FSs and limbic epilepsy in an animal model, we studied here if the duration of the inciting FSs influenced the probability of developing subsequent epilepsy and the severity of the spontaneous seizures. We evaluated if interictal epileptifom activity and/or elevation of hippocampal T2 signal on magnetic resonance image (MRI) provided predictive biomarkers for epileptogenesis, and if the inflammatory mediator interleukin-1beta (IL-1beta), an intrinsic element of FS generation, contributed also to subsequent epileptogenesis. We found that febrile status epilepticus, lasting an average of 64 min, increased the severity and duration of subsequent spontaneous seizures compared with FSs averaging 24 min. Interictal activity in rats sustaining febrile status epilepticus was also significantly longer and more robust, and correlated with the presence of hippocampal T2 changes in individual rats. Neither T2 changes nor interictal activity predicted epileptogenesis. Hippocampal levels of IL-1beta were significantly higher for >24 h after prolonged FSs. Chronically, IL-1beta levels were elevated only in rats developing spontaneous limbic seizures after febrile status epilepticus, consistent with a role for this inflammatory mediator in epileptogenesis. Establishing seizure duration as an important determinant in epileptogenesis and defining the predictive roles of interictal activity, MRI, and inflammatory processes are of paramount importance to the clinical understanding of the outcome of FSs, the most common neurological insult in infants and children.


Sujet(s)
Marqueurs biologiques/métabolisme , Modèles animaux de maladie humaine , Épilepsie/étiologie , Hippocampe/physiopathologie , Crises convulsives fébriles/métabolisme , Crises convulsives fébriles/anatomopathologie , Facteurs âges , Animaux , Animaux nouveau-nés , Antigènes CD11b/métabolisme , Stimulation électrique/effets indésirables , Électroencéphalographie/méthodes , Femelle , Protéine gliofibrillaire acide/métabolisme , Glycoprotéines/métabolisme , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Interleukine-1 bêta/métabolisme , Lectines/métabolisme , Imagerie par résonance magnétique/méthodes , Mâle , Grossesse , Rats , Rat Sprague-Dawley , Facteurs temps , Versicanes , Enregistrement sur magnétoscope/méthodes
19.
J Biol Chem ; 285(13): 9823-9834, 2010 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-20100831

RÉSUMÉ

Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),(7) severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1a(RH/RH) mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1a(RH/+) heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1a(RH/+) and Scn1a(RH/RH) mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.


Sujet(s)
Régulation de l'expression des gènes , Interneurones/métabolisme , Mutation , Protéines de tissu nerveux/métabolisme , Neurones/métabolisme , Canaux sodiques/métabolisme , Acide gamma-amino-butyrique/métabolisme , Animaux , Femelle , Homozygote , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Canal sodique voltage-dépendant NAV1.1 , Crises épileptiques/génétique
20.
J Neurosci ; 29(27): 8847-57, 2009 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-19587292

RÉSUMÉ

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are the molecular substrate of the hyperpolarization-activated inward current (I(h)). Because the developmental profile of HCN channels in the thalamus is not well understood, we combined electrophysiological, molecular, immunohistochemical, EEG recordings in vivo, and computer modeling techniques to examine HCN gene expression and I(h) properties in rat thalamocortical relay (TC) neurons in the dorsal part of the lateral geniculate nucleus and the functional consequence of this maturation. Recordings of TC neurons revealed an approximate sixfold increase in I(h) density between postnatal day 3 (P3) and P106, which was accompanied by significantly altered current kinetics, cAMP sensitivity, and steady-state activation properties. Quantification on tissue levels revealed a significant developmental decrease in cAMP. Consequently the block of basal adenylyl cyclase activity was accompanied by a hyperpolarizing shift of the I(h) activation curve in young but not adult rats. Quantitative analyses of HCN channel isoforms revealed a steady increase of mRNA and protein expression levels of HCN1, HCN2, and HCN4 with reduced relative abundance of HCN4. Computer modeling in a simplified thalamic network indicated that the occurrence of rhythmic delta activity, which was present in the EEG at P12, differentially depended on I(h) conductance and modulation by cAMP at different developmental states. These data indicate that the developmental increase in I(h) density results from increased expression of three HCN channel isoforms and that isoform composition and intracellular cAMP levels interact in determining I(h) properties to enable progressive maturation of rhythmic slow-wave sleep activity patterns.


Sujet(s)
Horloges biologiques/physiologie , Cortex cérébral/métabolisme , Canaux cationiques contrôlés par les nucléotides cycliques/biosynthèse , Régulation de l'expression des gènes au cours du développement/physiologie , Canaux ioniques/biosynthèse , Neurones/métabolisme , Canaux potassiques/biosynthèse , Thalamus/métabolisme , Animaux , Animaux nouveau-nés , Cortex cérébral/croissance et développement , Canaux cationiques contrôlés par les nucléotides cycliques/génétique , Canaux contrôlés par les nucléotides cycliques et activés par l'hyperpolarisation , Canaux ioniques/génétique , Voies nerveuses/croissance et développement , Voies nerveuses/métabolisme , Neurones/physiologie , Canaux potassiques/génétique , Isoformes de protéines/biosynthèse , Rats , Rat Sprague-Dawley , Thalamus/croissance et développement
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...