Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Heliyon ; 10(9): e30443, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38720729

RÉSUMÉ

Ischemic stroke, particularly embolic stroke, stands as a significant global contributor to mortality and long-term disabilities. This paper presents a comprehensive simulation of emboli motion through the middle cerebral artery (MCA), a prevalent site for embolic stroke. Our patient-specific computational model integrates major branches of the middle cerebral artery reconstructed from magnetic resonance angiography images, pulsatile flow dynamics, and emboli of varying geometries, sizes, and material properties. The fluid-structure interactions method is employed to simulate deformable emboli motion through the middle cerebral artery, allowing observation of hemodynamic changes in artery branches upon embolus entry. We investigated the impact of embolus presence on shear stress magnitude on artery walls, analyzed the effects of embolus material properties and geometries on embolus trajectory and motion dynamics within the middle cerebral artery. Additionally, we evaluated the non-Newtonian behavior of blood, comparing it with Newtonian blood behavior. Our findings highlight that embolus geometry significantly influences trajectory, motion patterns, and hemodynamics within middle cerebral artery branches. Emboli with visco-hyperelastic material properties experienced higher stresses upon collision with artery walls compared to those with hyperelastic properties. Furthermore, considering blood as a non-Newtonian fluid had notable effects on emboli stresses and trajectories within the artery, particularly during collisions. Notably, the maximum von Mises stress experienced in our study was 21.83 kPa, suggesting a very low probability of emboli breaking during movement, impact, and after coming to a stop. However, in certain situations, the magnitude of shear stress on them exceeded 1 kPa, increasing the likelihood of cracking and disintegration. These results serve as an initial step in anticipating critical clinical conditions arising from arterial embolism in the middle cerebral artery. They provide insights into the biomechanical parameters influencing embolism, contributing to improved clinical decision-making for stroke management.

2.
Med Biol Eng Comput ; 58(5): 1079-1089, 2020 May.
Article de Anglais | MEDLINE | ID: mdl-32152891

RÉSUMÉ

Stress urinary incontinence (SUI) or urine leakage from urethra occurs due to an increase in abdominal pressure resulting from stress like a cough or jumping height. SUI is more frequent among post-menopausal women. In the absence of bladder contraction, vesical pressure exceeds urethral pressure leading to urine leakage. The main aim of this study is to utilize fluid-structure interaction techniques to model bladder and urethra computationally under an external pressure like sneezing. Both models have been developed with linear elastic properties for the bladder wall while the patient model has also been simulated utilizing the Mooney-Rivlin solid model. The results show a good agreement between the clinical data and the predicted values of the computational models, specifically the pressure at the center of the bladder. There is 1.3% difference between the predicted vesical pressure and the vesical pressure obtained from urodynamic tests. It can be concluded that the accuracy of the predicted pressure in the center of the bladder is significantly higher for the simulation assuming nonlinear material property (hyperelastic) for the bladder in comparison to the accuracy of the linear elastic model. The model is beneficial for exploring treatment solutions for SUI disorder. Graphical abstract 3D processing of bladder deformation during abdominal pressure of a the physiological model and b the pathological model (starting from left to right and up to down, consecutively).


Sujet(s)
Simulation numérique , Vessie urinaire/physiologie , Incontinence urinaire d'effort/physiopathologie , Urodynamique/physiologie , Adulte , Phénomènes biomécaniques/physiologie , Femelle , Analyse des éléments finis , Humains , Adulte d'âge moyen , Pression
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE