Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 30
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Neurosci ; 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39289564

RÉSUMÉ

When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.

2.
J Neurosci ; 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39214707

RÉSUMÉ

Dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision making processes. Although two neuromodulators share a synthesis pathway and are co-activated under states of arousal, they engage in distinct circuits and modulatory roles. However, the specific role of each neuromodulator in decision making, in particular the exploration-exploitation tradeoff, remains unclear. Revealing how each neuromodulator contributes to exploration-exploitation tradeoff is important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration, a direct comparison using the same dynamic decision making task is needed. Here, we ran male and female mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA antagonist (flupenthixol), a nonselective DA agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol), and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine on exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. The modulatory effect of beta-noradrenergic receptor activity on exploration was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via sensitivity to outcome. Together, these findings suggested that the mechanisms that govern the exploration-exploitation transition are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration.Significance Statement Both dopamine (DA) and norepinephrine (NE) have been implicated in the decision making process. Although these two catecholamines have shared aspects of their biosynthetic pathways and projection targets, they are thought to exert many core functions via distinct neural targets and receptor subtypes. However, the computational neuroscience literature often ascribes similar roles to these catecholamines, despite the above evidence. Resolving this discrepancy is important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. This study examines the role of dopamine and norepinephrine on the explore-exploit tradeoff. By testing mice, we were able to compare multiple pharmacological agents within subjects, and examine sources of individual differences, allowing direct comparison between the effects of these two catecholamines in modulating decision making.

3.
Nat Commun ; 15(1): 6424, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080250

RÉSUMÉ

We make decisions by comparing values, but it is not yet clear how value is represented in the brain. Many models assume, if only implicitly, that the representational geometry of value is linear. However, in part due to a historical focus on noisy single neurons, rather than neuronal populations, this hypothesis has not been rigorously tested. Here, we examine the representational geometry of value in the ventromedial prefrontal cortex (vmPFC), a part of the brain linked to economic decision-making, in two male rhesus macaques. We find that values are encoded along a curved manifold in vmPFC. This curvilinear geometry predicts a specific pattern of irrational decision-making: that decision-makers will make worse choices when an irrelevant, decoy option is worse in value, compared to when it is better. We observe this type of irrational choices in behavior. Together, these results not only suggest that the representational geometry of value is nonlinear, but that this nonlinearity could impose bounds on rational decision-making.


Sujet(s)
Comportement de choix , Macaca mulatta , Cortex préfrontal , Animaux , Mâle , Cortex préfrontal/physiologie , Cortex préfrontal/imagerie diagnostique , Comportement de choix/physiologie , Prise de décision/physiologie , Récompense , Neurones/physiologie , Imagerie par résonance magnétique , Comportement animal/physiologie
4.
bioRxiv ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39026817

RÉSUMÉ

How do we make good decisions in uncertain environments? In psychology and neuroscience, the classic answer is that we calculate the value of each option and then compare the values to choose the most rewarding, modulo some exploratory noise. An ethologist, conversely, would argue that we commit to one option until its value drops below a threshold, at which point we start exploring other options. In order to determine which view better describes human decision-making, we developed a novel, foraging-inspired sequential decision-making model and used it to ask whether humans compare to threshold ("Forage") or compare alternatives ("Reinforcement-Learn" [RL]). We found that the foraging model was a better fit for participant behavior, better predicted the participants' tendency to repeat choices, and predicted the existence of held-out participants with a pattern of choice that was almost impossible under RL. Together, these results suggest that humans use foraging computations, rather than RL, even in classic reinforcement learning tasks.

5.
bioRxiv ; 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-38895240

RÉSUMÉ

Decision-making in uncertain environments often leads to varied outcomes. Understanding how individuals interpret the causes of unexpected feedback is crucial for adaptive behavior and mental well-being. Uncertainty can be broadly categorized into two components: volatility and stochasticity. Volatility is about how quickly conditions change, impacting results. Stochasticity, on the other hand, refers to outcomes affected by random chance or "luck". Understanding these factors enables individuals to have more effective environmental analysis and strategy implementation (explore or exploit) for future decisions. This study investigates how anxiety and apathy, two prevalent affective states, influence the perceptions of uncertainty and exploratory behavior. Participants (N = 1001) completed a restless three-armed bandit task that was analyzed using latent state models. Anxious individuals perceived uncertainty as more volatile, leading to increased exploration and learning rates, especially after reward omission. Conversely, apathetic individuals viewed uncertainty as more stochastic, resulting in decreased exploration and learning rates. The perceived volatility-to-stochasticity ratio mediated the anxiety-exploration relationship post-adverse outcomes. Dimensionality reduction showed exploration and uncertainty estimation to be distinct but related latent factors shaping a manifold of adaptive behavior that is modulated by anxiety and apathy. These findings reveal distinct computational mechanisms for how anxiety and apathy influence decision-making, providing a framework for understanding cognitive and affective processes in neuropsychiatric disorders.

6.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-38401541

RÉSUMÉ

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Sujet(s)
Attention , Prise de décision , Apprentissage , Lobe pariétal , Récompense , Animaux , Haplorhini
7.
ArXiv ; 2023 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-37744462

RÉSUMÉ

When choosing between options, we must associate their values with the action needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. To test this hypothesis, we examined neuronal responses in five reward-sensitive regions in macaques performing a risky choice task with sequential offers. Surprisingly, in all areas, the neural population encoded the values of offers presented on the left and right in distinct subspaces. We show that the encoding we observe is sufficient to bind the values of the offers to their respective positions in space while preserving abstract value information, which may be important for rapid learning and generalization to novel contexts. Moreover, after both offers have been presented, all areas encode the value of the first and second offers in orthogonal subspaces. In this case as well, the orthogonalization provides binding. Our binding-by-subspace hypothesis makes two novel predictions borne out by the data. First, behavioral errors should correlate with putative spatial (but not temporal) misbinding in the neural representation. Second, the specific representational geometry that we observe across animals also indicates that behavioral errors should increase when offers have low or high values, compared to when they have medium values, even when controlling for value difference. Together, these results support the idea that the brain makes use of semi-orthogonal subspaces to bind features together.

8.
Article de Anglais | MEDLINE | ID: mdl-37577290

RÉSUMÉ

Primatologists, psychologists and neuroscientists have long hypothesized that primate behavior is highly structured. However, delineating that structure has been impossible due to the difficulties of precision behavioral tracking. Here we analyzed a dataset consisting of continuous measures of the 3D position of two male rhesus macaques (Macaca mulatta) performing three different tasks in a large unrestrained environment over several hours. Using an unsupervised embedding approach on the tracked joints, we identified commonly repeated pose patterns, which we call postures. We found that macaques' behavior is characterized by 49 distinct postures, lasting an average of 0.6 seconds. We found evidence that behavior is hierarchically organized, in that transitions between poses tend to occur within larger modules, which correspond to identifiable actions; these actions are further organized hierarchically. Our behavioral decomposition allows us to identify universal (cross-individual and cross-task) and unique (specific to each individual and task) principles of behavior. These results demonstrate the hierarchical nature of primate behavior, provide a method for the automated ethogramming of primate behavior, and provide important constraints on neural models of pose generation.

9.
bioRxiv ; 2023 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-37425723

RÉSUMÉ

Exploration-exploitation decision-making is a feature of daily life that is altered in a number of neuropsychiatric conditions. Humans display a range of exploration and exploitation behaviors, which can be affected by apathy and anxiety. It remains unknown how factors underlying decision-making generate the spectrum of observed exploration-exploitation behavior and how they relate to states of anxiety and apathy. Here, we report a latent structure underlying sequential exploration and exploitation decisions that explains variation in anxiety and apathy. 1001 participants in a gender-balanced sample completed a three-armed restless bandit task along with psychiatric symptom surveys. Using dimensionality reduction methods, we found that decision sequences reduced to a low-dimensional manifold. The axes of this manifold explained individual differences in the balance between states of exploration and exploitation and the stability of those states, as determined by a statistical mechanics model of decision-making. Position along the balance axis was correlated with opposing symptoms of behavioral apathy and anxiety, while position along the stability axis correlated with the level of emotional apathy. This result resolves a paradox over how these symptoms can be correlated in samples but have opposite effects on behavior. Furthermore, this work provides a basis for using behavioral manifolds to reveal relationships between behavioral dynamics and affective states, with important implications for behavioral measurement approaches to neuropsychiatric conditions.

10.
bioRxiv ; 2023 May 24.
Article de Anglais | MEDLINE | ID: mdl-37292773

RÉSUMÉ

In uncertain environments, intelligent decision-makers exploit actions that have been rewarding in the past, but also explore actions that could be even better. Several neuromodulatory systems are implicated in exploration, based, in part, on work linking exploration to pupil size-a peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could instead track variables that make exploration more likely, like volatility or reward, without directly predicting either exploration or its neural bases. Here, we simultaneously measured pupil size, exploration, and neural population activity in the prefrontal cortex while two rhesus macaques explored and exploited in a dynamic environment. We found that pupil size under constant luminance specifically predicted the onset of exploration, beyond what could be explained by reward history. Pupil size also predicted disorganized patterns of prefrontal neural activity at both the single neuron and population levels, even within periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms promote the onset of exploration via driving the prefrontal cortex through a critical tipping point where prefrontal control dynamics become disorganized and exploratory decisions are possible.

11.
ArXiv ; 2023 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-36776821

RÉSUMÉ

When choosing between options, we must solve an important binding problem. The values of the options must be associated with information about the action needed to select them. We hypothesize that the brain solves this binding problem through use of distinct population subspaces. To test this hypothesis, we examined the responses of single neurons in five reward-sensitive regions in rhesus macaques performing a risky choice task. In all areas, neurons encoded the value of the offers presented on both the left and the right side of the display in semi-orthogonal subspaces, which served to bind the values of the two offers to their positions in space. Supporting the idea that this orthogonalization is functionally meaningful, we observed a session-to-session covariation between choice behavior and the orthogonalization of the two value subspaces: trials with less orthogonalized subspaces were associated with greater likelihood of choosing the less valued option. Further inspection revealed that these semi-orthogonal subspaces arose from a combination of linear and nonlinear mixed selectivity in the neural population. We show this combination of selectivity balances reliable binding with an ability to generalize value across different spatial locations. These results support the hypothesis that semi-orthogonal subspaces support reliable binding, which is essential to flexible behavior in the face of multiple options.

12.
bioRxiv ; 2023 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-36711959

RÉSUMÉ

The catecholamines dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision making processes. Although the two neuromodulators share a synthesis pathway and are co-activated under states of arousal, they engage in distinct circuits and roles in modulating neural activity across the brain. However, in the computational neuroscience literature, they have been assigned similar roles in modulating the latent cognitive processes of decision making, in particular the exploration-exploitation tradeoff. Revealing how each neuromodulator contributes to this explore-exploit process will be important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration and exploitation, a direct comparison using the same dynamic decision making task is needed. Here, we ran mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA receptor antagonist (flupenthixol), a nonselective DA receptor agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol), and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine receptor activity on the level of exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. Beta-noradrenergic receptor activity also modulated exploration, but the modulatory effect was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via outcome sensitivity. Together, these findings suggested that the mechanisms that govern the transition between exploration and exploitation are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration.

13.
Curr Biol ; 32(20): 4325-4336.e5, 2022 10 24.
Article de Anglais | MEDLINE | ID: mdl-36049479

RÉSUMÉ

Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the lateral habenula (LHb) has been linked to negative valence, but its role in regulating the balance between engaged reward seeking and disengaged behavioral states remains unclear. Here, we show that LHb neural activity is tonically elevated during minutes-long periods of disengagement from reward-seeking behavior, both when due to repeated reward omission (negative valence) and when sufficient reward has been consumed (positive valence). Furthermore, we show that LHb inhibition extends ongoing reward-seeking behavioral states but does not prompt task re-engagement. We find no evidence for similar tonic activity changes in ventral tegmental area dopamine neurons. Our findings support a framework in which tonic activity in LHb neurons suppresses engagement in reward-seeking behavior in response to both negatively and positively valenced factors.


Sujet(s)
Habénula , Habénula/physiologie , Récompense , Aire tegmentale ventrale/physiologie , Neurones dopaminergiques/physiologie , Stimulation électrique , Voies nerveuses/physiologie
14.
Elife ; 102021 11 19.
Article de Anglais | MEDLINE | ID: mdl-34796870

RÉSUMÉ

Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless two-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get 'stuck' in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.


When faced with a decision to make, humans and other animals reflect on past experiences of similar situations to choose the best option. However, in an uncertain situation, this decision process requires balancing two competing priorities: exploiting options that are expected to be rewarding (exploitation), and exploring alternatives that could be more valuable (exploration). Decision making and exploration are disrupted in many mental disorders, some of which can differ in either presentation or risk of development across women and men. This raises the question of whether sex differences in exploration and exploitation could contribute to the vulnerability to these conditions. To shed light on this question, Chen et al. studied exploration in male and female mice as they played a video game. The mice had the option to touch one of two locations on a screen for a chance to win a small reward. The likelihood of success was different between the two options, and so the mice were incentivized to determine which was the more rewarding button. While the mice were similarly successful in finding rewards regardless of sex, on average male mice were more likely to keep exploring between the options while female mice more quickly gained confidence in an option. These differences were stronger during uncertain periods of learning and exploration than when making choices in a well-known situation, indicating that periods of uncertainty are when the influence of sex on cognition are most visible. However, not every female or male mouse was the same ­ there was as much variability within a sex as was seen between sexes. These results indicate that sex mechanisms, along with many other influences cause individual differences in the cognitive processes important for decision making. The approach used by Chen et al. could help to study individual differences in cognition in other species, and shed light on how individual differences in decision-making processes could contribute to risk and resilience to mental disorders.


Sujet(s)
Comportement de choix , Prise de décision , Comportement d'exploration , Animaux , Anxiété , Femelle , Mâle , Souris , Récompense , Facteurs sexuels
15.
Neuron ; 109(19): 3055-3068, 2021 10 06.
Article de Anglais | MEDLINE | ID: mdl-34416170

RÉSUMÉ

A major shift is happening within neurophysiology: a population doctrine is drawing level with the single-neuron doctrine that has long dominated the field. Population-level ideas have so far had their greatest impact in motor neuroscience, but they hold great promise for resolving open questions in cognition as well. Here, we codify the population doctrine and survey recent work that leverages this view to specifically probe cognition. Our discussion is organized around five core concepts that provide a foundation for population-level thinking: (1) state spaces, (2) manifolds, (3) coding dimensions, (4) subspaces, and (5) dynamics. The work we review illustrates the progress and promise that population-level thinking holds for cognitive neuroscience-for delivering new insight into attention, working memory, decision-making, executive function, learning, and reward processing.


Sujet(s)
Neurosciences cognitives/tendances , Neurophysiologie/tendances , Population , Animaux , Humains
16.
Curr Biol ; 31(1): 39-50.e4, 2021 01 11.
Article de Anglais | MEDLINE | ID: mdl-33125868

RÉSUMÉ

A frequent assumption in value-based decision-making tasks is that agents make decisions based on the feature dimension that reward probabilities vary on. However, in complex, multidimensional environments, stimuli can vary on multiple dimensions at once, meaning that the feature deserving the most credit for outcomes is not always obvious. As a result, individuals may vary in the strategies used to sample stimuli across dimensions, and these strategies may have an unrecognized influence on decision-making. Sex is a proxy for multiple genetic and endocrine influences on behavior, including how environments are sampled. In this study, we examined the strategies adopted by female and male mice as they learned the value of stimuli that varied in both image and location in a visually cued two-armed bandit, allowing two possible dimensions to learn about. Female mice acquired the correct image-value associations more quickly than male mice, preferring a fundamentally different strategy. Female mice were more likely to constrain their decision-space early in learning by preferentially sampling one location over which images varied. Conversely, male mice were more likely to be inconsistent, changing their choice frequently and responding to the immediate experience of stochastic rewards. Individual strategies were related to sex-biased changes in neuronal activation in early learning. Together, we find that in mice, sex is associated with divergent strategies for sampling and learning about the world, revealing substantial unrecognized variability in the approaches implemented during value-based decision making.


Sujet(s)
Comportement de choix/physiologie , Conditionnement opérant/physiologie , Récompense , Animaux , Comportement animal/physiologie , Femelle , Mâle , Souris , Modèles animaux , Facteurs sexuels , Processus stochastiques , Facteurs temps
17.
Curr Opin Behav Sci ; 38: 49-56, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33184605

RÉSUMÉ

Explore-exploit decisions require us to trade off the benefits of exploring unknown options to learn more about them, with exploiting known options, for immediate reward. Such decisions are ubiquitous in nature, but from a computational perspective, they are notoriously hard. There is therefore much interest in how humans and animals make these decisions and recently there has been an explosion of research in this area. Here we provide a biased and incomplete snapshot of this field focusing on the major finding that many organisms use two distinct strategies to solve the explore-exploit dilemma: a bias for information ('directed exploration') and the randomization of choice ('random exploration'). We review evidence for the existence of these strategies, their computational properties, their neural implementations, as well as how directed and random exploration vary over the lifespan. We conclude by highlighting open questions in this field that are ripe to both explore and exploit.

18.
PLoS Biol ; 18(11): e3000951, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-33253163

RÉSUMÉ

We have the capacity to follow arbitrary stimulus-response rules, meaning simple policies that guide our behavior. Rule identity is broadly encoded across decision-making circuits, but there are less data on how rules shape the computations that lead to choices. One idea is that rules could simplify these computations. When we follow a rule, there is no need to encode or compute information that is irrelevant to the current rule, which could reduce the metabolic or energetic demands of decision-making. However, it is not clear if the brain can actually take advantage of this computational simplicity. To test this idea, we recorded from neurons in 3 regions linked to decision-making, the orbitofrontal cortex (OFC), ventral striatum (VS), and dorsal striatum (DS), while macaques performed a rule-based decision-making task. Rule-based decisions were identified via modeling rules as the latent causes of decisions. This left us with a set of physically identical choices that maximized reward and information, but could not be explained by simple stimulus-response rules. Contrasting rule-based choices with these residual choices revealed that following rules (1) decreased the energetic cost of decision-making; and (2) expanded rule-relevant coding dimensions and compressed rule-irrelevant ones. Together, these results suggest that we use rules, in part, because they reduce the costs of decision-making through a distributed representational warping in decision-making circuits.


Sujet(s)
Corps strié/physiologie , Prise de décision/physiologie , Cortex préfrontal/physiologie , Striatum ventral/physiologie , Animaux , Comportement de choix/physiologie , Macaca mulatta/physiologie , Macaca mulatta/psychologie , Mâle , Réseau nerveux/physiologie , Phénomènes physiologiques du système nerveux , Neurones/physiologie , Récompense , Analyse et exécution des tâches
19.
PLoS Comput Biol ; 15(11): e1007475, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31703063

RÉSUMÉ

In many cognitive tasks, lapses (spontaneous errors) are tacitly dismissed as the result of nuisance processes like sensorimotor noise, fatigue, or disengagement. However, some lapses could also be caused by exploratory noise: randomness in behavior that facilitates learning in changing environments. If so, then strategic processes would need only up-regulate (rather than generate) exploration to adapt to a changing environment. This view predicts that more frequent lapses should be associated with greater flexibility because these behaviors share a common cause. Here, we report that when rhesus macaques performed a set-shifting task, lapse rates were negatively correlated with perseverative error frequency across sessions, consistent with a common basis in exploration. The results could not be explained by local failures to learn. Furthermore, chronic exposure to cocaine, which is known to impair cognitive flexibility, did increase perseverative errors, but, surprisingly, also improved overall set-shifting task performance by reducing lapse rates. We reconcile these results with a state-switching model in which cocaine decreases exploration by deepening attractor basins corresponding to rule states. These results support the idea that exploratory noise contributes to lapses, affecting rule-based decision-making even when it has no strategic value, and suggest that one key mechanism for regulating exploration may be the depth of rule states.


Sujet(s)
Attention/physiologie , Cognition/physiologie , Comportement d'exploration/physiologie , Animaux , Cocaïne/pharmacologie , Biologie informatique/méthodes , Prise de décision/physiologie , Apprentissage/physiologie , Macaca mulatta , Mâle , Modèles théoriques , Temps de réaction/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE