Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Clin Invest ; 134(7)2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38557491

RÉSUMÉ

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Sujet(s)
Malformations multiples , Acétyl-carnitine , Hypothyroïdie congénitale , Malformations crâniofaciales , Histone acetyltransferases , Déficience intellectuelle , Instabilité articulaire , Animaux , Humains , Souris , Malformations multiples/traitement médicamenteux , Malformations multiples/génétique , Acétylation , Acétyl-carnitine/pharmacologie , Acétyl-carnitine/usage thérapeutique , Blépharophimosis , Chromatine , Malformations crâniofaciales/traitement médicamenteux , Malformations crâniofaciales/génétique , Exons , Faciès , Cardiopathies congénitales , Histone acetyltransferases/antagonistes et inhibiteurs , Histone acetyltransferases/génétique , Histone acetyltransferases/métabolisme , Histone/génétique , Déficience intellectuelle/traitement médicamenteux , Déficience intellectuelle/génétique
2.
Cell Death Dis ; 13(7): 627, 2022 07 20.
Article de Anglais | MEDLINE | ID: mdl-35853868

RÉSUMÉ

Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.


Sujet(s)
Histone , Lysine acetyltransferase 5 , Lysine , Protéine p53 suppresseur de tumeur , Acétylation , Animaux , Points de contrôle du cycle cellulaire/physiologie , Inhibiteur p16 de kinase cycline-dépendante/génétique , Inhibiteur p16 de kinase cycline-dépendante/métabolisme , Histone acetyltransferases/génétique , Histone acetyltransferases/métabolisme , Histone/génétique , Histone/métabolisme , Humains , Lysine/métabolisme , Lysine acetyltransferase 5/déficit , Lysine acetyltransferase 5/génétique , Lysine acetyltransferase 5/métabolisme , Souris , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme
3.
Development ; 147(21)2020 10 23.
Article de Anglais | MEDLINE | ID: mdl-32994169

RÉSUMÉ

Börjeson-Forssman-Lehmann syndrome (BFLS) is an intellectual disability and endocrine disorder caused by plant homeodomain finger 6 (PHF6) mutations. Individuals with BFLS present with short stature. We report a mouse model of BFLS, in which deletion of Phf6 causes a proportional reduction in body size compared with control mice. Growth hormone (GH) levels were reduced in the absence of PHF6. Phf6-/Y animals displayed a reduction in the expression of the genes encoding GH-releasing hormone (GHRH) in the brain, GH in the pituitary gland and insulin-like growth factor 1 (IGF1) in the liver. Phf6 deletion specifically in the nervous system caused a proportional growth defect, indicating a neuroendocrine contribution to the phenotype. Loss of suppressor of cytokine signaling 2 (SOCS2), a negative regulator of growth hormone signaling partially rescued body size, supporting a reversible deficiency in GH signaling. These results demonstrate that PHF6 regulates the GHRH/GH/IGF1 axis.


Sujet(s)
Régulation négative , Épilepsie/métabolisme , Face/malformations , Doigts/malformations , Troubles de la croissance/métabolisme , Hormone de libération de l'hormone de croissance/métabolisme , Hormone de croissance/métabolisme , Hypogonadisme/métabolisme , Facteur de croissance IGF-I/métabolisme , Retard mental lié à l'X/métabolisme , Obésité/métabolisme , Protéines de répression/métabolisme , Transduction du signal , Animaux , Animaux nouveau-nés , Modèles animaux de maladie humaine , Épilepsie/sang , Épilepsie/anatomopathologie , Face/anatomopathologie , Doigts/anatomopathologie , Troubles de la croissance/sang , Troubles de la croissance/anatomopathologie , Hormone de croissance/sang , Hypogonadisme/sang , Hypogonadisme/anatomopathologie , Hypothalamus/métabolisme , Facteur de croissance IGF-I/génétique , Mâle , Retard mental lié à l'X/sang , Retard mental lié à l'X/anatomopathologie , Souris , Souris de lignée C57BL , Souris knockout , Système nerveux/métabolisme , Obésité/sang , Obésité/anatomopathologie , Spécificité d'organe , Hypophyse/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Protéines SOCS/métabolisme
4.
Mol Cell Biol ; 40(4)2020 01 30.
Article de Anglais | MEDLINE | ID: mdl-31767635

RÉSUMÉ

HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.


Sujet(s)
Prolifération cellulaire/génétique , Réplication de l'ADN/génétique , Histone acetyltransferases/métabolisme , Histone/métabolisme , Acétylation , Systèmes CRISPR-Cas , Lignée cellulaire tumorale , Délétion de gène , Cellules HEK293 , Cellules HeLa , Histone acetyltransferases/génétique , Humains , Cellules MCF-7 , Maturation post-traductionnelle des protéines , Interférence par ARN , /génétique , Petit ARN interférent/génétique
5.
Cell Rep ; 24(12): 3285-3295.e4, 2018 09 18.
Article de Anglais | MEDLINE | ID: mdl-30232009

RÉSUMÉ

Apoptotic cell death removes unwanted cells and is regulated by interactions between pro-survival and pro-apoptotic members of the BCL-2 protein family. The regulation of apoptosis is thought to be crucial for normal embryonic development. Accordingly, complete loss of pro-survival MCL-1 or BCL-XL (BCL2L1) causes embryonic lethality. However, it is not known whether minor reductions in pro-survival proteins could cause developmental abnormalities. We explored the rate-limiting roles of MCL-1 and BCL-XL in development and show that combined loss of single alleles of Mcl-1 and Bcl-x causes neonatal lethality. Mcl-1+/-;Bcl-x+/- mice display craniofacial anomalies, but additional loss of a single allele of pro-apoptotic Bim (Bcl2l11) restores normal development. These findings demonstrate that the control of cell survival during embryogenesis is finely balanced and suggest that some human craniofacial defects, for which causes are currently unknown, may be due to subtle imbalances between pro-survival and pro-apoptotic BCL-2 family members.


Sujet(s)
Protéine-11 analogue à Bcl-2/génétique , Malformations crâniofaciales/génétique , Protéine Mcl-1/génétique , Protéine bcl-X/génétique , Animaux , Apoptose , Protéine-11 analogue à Bcl-2/métabolisme , Cellules cultivées , Femelle , Hétérozygote , Mâle , Souris , Souris de lignée C57BL , Protéine Mcl-1/métabolisme , Protéine bcl-X/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE