Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Monit Assess ; 196(6): 540, 2024 May 11.
Article de Anglais | MEDLINE | ID: mdl-38733434

RÉSUMÉ

X-ray fluorescence is a fast, cost-effective, and eco-friendly method for elemental analyses. Portable X-ray fluorescence spectrometers (pXRF) have proven instrumental in detecting metals across diverse matrices, including plants. However, sample preparation and measurement procedures need to be standardized for each instrument. This study examined sample preparation methods and predictive capabilities for nickel (Ni) concentrations in various plants using pXRF, employing empirical calibration based on inductively coupled plasma optical emission spectroscopy (ICP-OES) Ni data. The evaluation involved 300 plant samples of 14 species with variable of Ni accumulation. Various dwell times (30, 60, 90, 120, 300 s) and sample masses (0.5, 1.0, 1.5, 2.0 g) were tested. Calibration models were developed through empirical and correction factor approaches. The results showed that the use of 1.0 g of sample (0.14 g cm-2) and a dwell time of 60 s for the study conditions were appropriate for detection by pXRF. Ni concentrations determined by ICP-OES were highly correlated (R2 = 0.94) with those measured by the pXRF instrument. Therefore, pXRF can provide reliable detection of Ni in plant samples, avoiding the digestion of samples and reducing the decision-making time in environmental management.


Sujet(s)
Surveillance de l'environnement , Nickel , Plantes , Spectrométrie d'émission X , Nickel/analyse , Surveillance de l'environnement/méthodes , Surveillance de l'environnement/instrumentation , Spectrométrie d'émission X/méthodes , Plantes/composition chimique , Polluants du sol/analyse
2.
Sci Total Environ ; 919: 170691, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38325468

RÉSUMÉ

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.


Sujet(s)
Écosystème , Nickel , Nickel/analyse , Malaisie , Fermes , Calcium/métabolisme , Agriculture , Sol , Plantes/métabolisme
3.
Int J Phytoremediation ; 23(11): 1157-1168, 2021.
Article de Anglais | MEDLINE | ID: mdl-33586537

RÉSUMÉ

The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.


Sujet(s)
Nickel , Polluants du sol , Dépollution biologique de l'environnement , Amérique centrale , Mexique , Nickel/analyse , Sol , Polluants du sol/analyse
4.
Am J Bot ; 106(10): 1377-1385, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31553490

RÉSUMÉ

PREMISE: Hyperaccumulation of heavy metals in plants has never been documented from Central America or Mexico. Psychotria grandis, P. costivenia, and P. glomerata (Rubiaceae) have been reported to hyperaccumulate nickel in the Greater Antilles, but they also occur widely across the neotropics. The goals of this research were to investigate the geographic distribution of hyperaccumulation in these species and explore the phylogenetic distribution of hyperaccumulation in this clade by testing related species. METHODS: Portable x-ray fluorescence (XRF) spectroscopy was used to analyze 565 specimens representing eight species of Psychotria from the Missouri Botanical Garden herbarium. RESULTS: Nickel hyperaccumulation was found in specimens of Psychotria costivenia ranging from Mexico to Costa Rica and in specimens of P. grandis from Guatemala to Ecuador and Venezuela. Among related species, nickel hyperaccumulation is reported for the first time in P. lorenciana and P. papantlensis, but no evidence of hyperaccumulation was found in P. clivorum, P. flava, or P. pleuropoda. Previous reports of hyperaccumulation in P. glomerata appear to be erroneous, resulting from taxonomic synonymy and specimen misidentification. CONCLUSIONS: Hyperaccumulation of nickel by Psychotria is now known to occur widely from southern Mexico through Central America to northwestern South America, including some areas not known to have ultramafic soils. Novel aspects of this research include the successful prediction of new hyperaccumulator species based on molecular phylogeny, use of XRF technology to nondestructively obtain elemental data from herbarium specimens, and documentation of previously unknown areas of ultramafic or nickel-rich soil based on such data.


Sujet(s)
Psychotria , Amérique centrale , Costa Rica , Mexique , Nickel , Phylogenèse , Amérique du Sud
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE