Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Antibodies (Basel) ; 11(4)2022 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-36546901

RÉSUMÉ

A key in controlling the SARS-CoV-2 pandemic is the assessment of the immune status of the population. We explored the utility of SARS-CoV-2 virus-like particles (VLPs) as antigens to detect specific humoral immune reactions in an enzyme-linked immunosorbent assay (ELISA). For this purpose, SARS-CoV-2 VLPs were produced from an engineered cell line and characterized by Western blot, ELISA, and nanoparticle tracking analysis. Subsequently, we collected 42 serum samples from before the pandemic (2014), 89 samples from healthy subjects, and 38 samples from vaccinated subjects. Seventeen samples were collected less than three weeks after infection, and forty-four samples more than three weeks after infection. All serum samples were characterized for their reactivity with VLPs and the SARS-CoV-2 N- and S-protein. Finally, we compared the performance of the VLP-based ELISA with a certified in vitro diagnostic device (IVD). In the applied set of samples, we determined a sensitivity of 95.5% and a specificity of 100% for the certified IVD. There were seven samples with an uncertain outcome. Our VLP-ELISA demonstrated a superior performance, with a sensitivity of 97.5%, a specificity of 100%, and only three uncertain outcomes. This result warrants further research to develop a certified IVD based on SARS-CoV-2 VLPs as an antigen.

2.
Front Immunol ; 13: 930975, 2022.
Article de Anglais | MEDLINE | ID: mdl-36189209

RÉSUMÉ

Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a naïve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.


Sujet(s)
COVID-19 , Glycoprotéine de spicule des coronavirus , Anticorps antiviraux , COVID-19/diagnostic , Dépistage de la COVID-19 , Humains , Immunoglobuline G , Chaines lourdes des immunoglobulines/génétique , Pandémies , SARS-CoV-2
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE