Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Med Chem ; 66(20): 14188-14207, 2023 10 26.
Article de Anglais | MEDLINE | ID: mdl-37797307

RÉSUMÉ

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.


Sujet(s)
Tumeurs , Oxadiazoles , Rats , Souris , Animaux , Histone deacetylase 6 , Oxadiazoles/pharmacologie , Tubuline/métabolisme , Inhibiteurs de désacétylase d'histone/pharmacologie , Inhibiteurs de désacétylase d'histone/composition chimique
2.
ACS Med Chem Lett ; 13(4): 681-686, 2022 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-35450368

RÉSUMÉ

Thiazolidinedione PPARγ agonists such as rosiglitazone and pioglitazone are effective antidiabetic drugs, but side effects have limited their use. It has been posited that their positive antidiabetic effects are mainly mediated by the inhibition of the CDK5-mediated Ser273 phosphorylation of PPARγ, whereas the side effects are linked to classical PPARγ agonism. Thus compounds that inhibit PPARγ Ser273 phosphorylation but lack classical PPARγ agonism have been sought as safer antidiabetic therapies. Herein we report the discovery by virtual screening of 10, which is a potent PPARγ binder and in vitro inhibitor of the CDK5-mediated phosphorylation of PPARγ Ser273 and displays negligible PPARγ agonism in a reporter gene assay. The pharmacokinetic properties of 10 are compatible with oral dosing, enabling preclinical in vivo testing, and a 7 day treatment demonstrated an improvement in insulin sensitivity in the ob/ob diabetic mouse model.

3.
ACS Chem Biol ; 16(1): 116-124, 2021 01 15.
Article de Anglais | MEDLINE | ID: mdl-33411499

RÉSUMÉ

Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 (iso) or ω-2 (anteiso) positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon N-acylation with trans-2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the ß-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the trans-2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing Streptomyces are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing Streptomyces and concomitantly produce structurally novel neo-branched TUN N-acyl variants.


Sujet(s)
Produits biologiques/métabolisme , Métabolisme lipidique , Streptomyces/métabolisme , Produits biologiques/composition chimique , Chromatographie en phase liquide à haute performance/méthodes , Spectrométrie de masse MALDI/méthodes , Relation structure-activité
4.
ACS Chem Biol ; 15(11): 2885-2895, 2020 11 20.
Article de Anglais | MEDLINE | ID: mdl-33164499

RÉSUMÉ

The alarming growth of antibiotic resistance that is currently ongoing is a serious threat to human health. One of the most promising novel antibiotic targets is MraY (phospho-MurNAc-pentapeptide-transferase), an essential enzyme in bacterial cell wall synthesis. Through recent advances in biochemical research, there is now structural information available for MraY, and for its human homologue GPT (GlcNAc-1-P-transferase), that opens up exciting possibilities for structure-based drug design. The antibiotic compound tunicamycin is a natural product inhibitor of MraY that is also toxic to eukaryotes through its binding to GPT. In this work, we have used tunicamycin and modified versions of tunicamycin as tool compounds to explore the active site of MraY and to gain further insight into what determines inhibitor potency. We have investigated tunicamycin variants where the following motifs have been modified: the length and branching of the tunicamycin fatty acyl chain, the saturation of the fatty acyl chain, the 6″-hydroxyl group of the GlcNAc ring, and the ring structure of the uracil motif. The compounds are analyzed in terms of how potently they bind to MraY, inhibit the activity of the enzyme, and affect the protein thermal stability. Finally, we rationalize these results in the context of the protein structures of MraY and GPT.


Sujet(s)
Antibactériens/pharmacologie , Protéines bactériennes/antagonistes et inhibiteurs , Protéines bactériennes/composition chimique , Domaine catalytique/effets des médicaments et des substances chimiques , Transferases/antagonistes et inhibiteurs , Transferases/composition chimique , Tunicamycine/pharmacologie , Infections bactériennes/traitement médicamenteux , Protéines bactériennes/métabolisme , Clostridium/enzymologie , Infections à Clostridium/traitement médicamenteux , Guanosine triphosphate/métabolisme , Humains , Simulation de docking moléculaire , Transferases/métabolisme , Transferases (other substituted phosphate groups)
5.
Sci Rep ; 10(1): 16167, 2020 09 30.
Article de Anglais | MEDLINE | ID: mdl-32999380

RÉSUMÉ

Overproduction and purification of membrane proteins are generally challenging and time-consuming procedures due to low expression levels, misfolding, and low stability once extracted from the membrane. Reducing processing steps and shortening the timespan for purification represent attractive approaches to overcome some of these challenges. We have therefore compared a fast "teabag" purification method with conventional purification for five different membrane proteins (MraY, AQP10, ClC-1, PAR2 and KCC2). Notably, this new approach reduces the purification time significantly, and the quality of the purified membrane proteins is equal to or exceeds conventional methods as assessed by size exclusion chromatography, SDS-PAGE and downstream applications such as ITC, crystallization and cryo-EM. Furthermore, the method is scalable, applicable to a range of affinity resins and allows for parallelization. Consequently, the technique has the potential to substantially simplify purification efforts of membrane proteins in basic and applied sciences.


Sujet(s)
Protéines membranaires/métabolisme , Électrophorèse sur gel de polyacrylamide
6.
J Med Chem ; 62(17): 7769-7787, 2019 09 12.
Article de Anglais | MEDLINE | ID: mdl-31415176

RÉSUMÉ

While bronchodilators and inhaled corticosteroids are the mainstay of asthma treatment, up to 50% of asthmatics remain uncontrolled. Many studies show that the cysteinyl leukotriene cascade remains highly activated in some asthmatics, even those on high-dose inhaled or oral corticosteroids. Hence, inhibition of the leukotriene C4 synthase (LTC4S) enzyme could provide a new and differentiated core treatment for patients with a highly activated cysteinyl leukotriene cascade. Starting from a screening hit (3), a program to discover oral inhibitors of LTC4S led to (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) (36), a picomolar LTC4S inhibitor (IC50 = 0.28 nM) with high lipophilic ligand efficiency (LLE = 8.5), which displays nanomolar potency in cells (peripheral blood mononuclear cell, IC50,free = 6.2 nM) and good in vivo pharmacodynamics in a calcium ionophore-stimulated rat model after oral dosing (in vivo, IC50,free = 34 nM). Compound 36 mitigates the GABA binding, hepatic toxicity signal, and in vivo toxicology findings of an early lead compound 7 with a human dose predicted to be 30 mg once daily.


Sujet(s)
Antiasthmatiques/pharmacologie , Asthme/traitement médicamenteux , Découverte de médicament , Antienzymes/pharmacologie , Glutathione transferase/antagonistes et inhibiteurs , Pyrazines/pharmacologie , Administration par voie orale , Animaux , Antiasthmatiques/administration et posologie , Antiasthmatiques/composition chimique , Asthme/métabolisme , Modèles animaux de maladie humaine , Relation dose-effet des médicaments , Antienzymes/administration et posologie , Antienzymes/composition chimique , Glutathione transferase/métabolisme , Humains , Structure moléculaire , Pyrazines/synthèse chimique , Pyrazines/composition chimique , Rats , Relation structure-activité
7.
Drug Discov Today ; 23(7): 1426-1435, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-29778697

RÉSUMÉ

The rapid growth of antibiotic-resistant bacterial infections is of major concern for human health. Therefore, it is of great importance to characterize novel targets for the development of antibacterial drugs. One promising protein target is MraY (UDP-N-acetylmuramyl-pentapeptide: undecaprenyl phosphate N-acetylmuramyl-pentapeptide-1-phosphate transferase or MurNAc-1-P-transferase), which is essential for bacterial cell wall synthesis. Here, we summarize recent breakthroughs in structural studies of bacterial MraYs and the closely related human GPT (UDP-N-acetylglucosamine: dolichyl phosphate N-acetylglucosamine-1-phosphate transferase or GlcNAc-1-P-transferase). We present a detailed comparison of interaction modes with the natural product inhibitors tunicamycin and muraymycin D2. Finally, we speculate on possible routes to design an antibacterial agent in the form of a potent and selective inhibitor against MraY.


Sujet(s)
Antibactériens/pharmacologie , Bactéries/effets des médicaments et des substances chimiques , Protéines bactériennes/antagonistes et inhibiteurs , Conception de médicament , Antienzymes/pharmacologie , Peptidoglycane/biosynthèse , Transferases/antagonistes et inhibiteurs , Animaux , Antibactériens/synthèse chimique , Bactéries/enzymologie , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Résistance bactérienne aux médicaments , Antienzymes/synthèse chimique , Humains , Modèles moléculaires , Nucléosides/composition chimique , Nucléosides/pharmacologie , Peptides/composition chimique , Peptides/pharmacologie , Conformation des protéines , Relation structure-activité , Transferases/composition chimique , Transferases/métabolisme , Transferases (other substituted phosphate groups)/antagonistes et inhibiteurs , Transferases (other substituted phosphate groups)/composition chimique , Transferases (other substituted phosphate groups)/métabolisme , Tunicamycine/composition chimique , Tunicamycine/pharmacologie
8.
Nat Chem Biol ; 13(3): 265-267, 2017 03.
Article de Anglais | MEDLINE | ID: mdl-28068312

RÉSUMÉ

The rapid increase of antibiotic resistance has created an urgent need to develop novel antimicrobial agents. Here we describe the crystal structure of the promising bacterial target phospho-N-acetylmuramoyl-pentapeptide translocase (MraY) in complex with the nucleoside antibiotic tunicamycin. The structure not only reveals the mode of action of several related natural-product antibiotics but also gives an indication on the binding mode of the MraY UDP-MurNAc-pentapeptide and undecaprenyl-phosphate substrates.


Sujet(s)
Antibactériens/pharmacologie , Protéines bactériennes/effets des médicaments et des substances chimiques , Clostridium/effets des médicaments et des substances chimiques , Transferases/effets des médicaments et des substances chimiques , Tunicamycine/pharmacologie , Antibactériens/composition chimique , Protéines bactériennes/composition chimique , Clostridium/enzymologie , Tests de sensibilité microbienne , Modèles moléculaires , Relation structure-activité , Transferases/composition chimique , Transferases (other substituted phosphate groups) , Tunicamycine/composition chimique
9.
MAbs ; 7(1): 152-66, 2015.
Article de Anglais | MEDLINE | ID: mdl-25484051

RÉSUMÉ

Therapeutic monoclonal antibodies targeting G-protein-coupled receptors (GPCRs) are desirable for intervention in a wide range of disease processes. The discovery of such antibodies is challenging due to a lack of stability of many GPCRs as purified proteins. We describe here the generation of Fpro0165, a human anti-formyl peptide receptor 1 (FPR1) antibody generated by variable domain engineering of an antibody derived by immunization of transgenic mice expressing human variable region genes. Antibody isolation and subsequent engineering of affinity, potency and species cross-reactivity using phage display were achieved using FPR1 expressed on HEK cells for immunization and selection, along with calcium release cellular assays for antibody screening. Fpro0165 shows full neutralization of formyl peptide-mediated activation of primary human neutrophils. A crystal structure of the Fpro0165 Fab shows a long, protruding VH CDR3 of 24 amino acids and in silico docking with a homology model of FPR1 suggests that this long VH CDR3 is critical to the predicted binding mode of the antibody. Antibody mutation studies identify the apex of the long VH CDR3 as key to mediating the species cross-reactivity profile of the antibody. This study illustrates an approach for antibody discovery and affinity engineering to typically intractable membrane proteins such as GPCRs.


Sujet(s)
Anticorps monoclonaux/composition chimique , Régions déterminant la complémentarité/composition chimique , Chaines lourdes des immunoglobulines/composition chimique , Simulation de docking moléculaire , Récepteurs aux peptides formylés/antagonistes et inhibiteurs , Animaux , Anticorps monoclonaux/génétique , Anticorps monoclonaux/immunologie , Cellules CHO , Régions déterminant la complémentarité/génétique , Régions déterminant la complémentarité/immunologie , Cricetinae , Cricetulus , Cristallographie aux rayons X , Cellules HEK293 , Humains , Chaines lourdes des immunoglobulines/génétique , Chaines lourdes des immunoglobulines/immunologie , Souris , Granulocytes neutrophiles/immunologie , Structure quaternaire des protéines , Récepteurs aux peptides formylés/immunologie
10.
Proc Natl Acad Sci U S A ; 110(10): 3806-11, 2013 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-23431194

RÉSUMÉ

Prostaglandin E2 (PGE2) is a key mediator in inflammatory response. The main source of inducible PGE2, microsomal PGE2 synthase-1 (mPGES-1), has emerged as an interesting drug target for treatment of pain. To support inhibitor design, we have determined the crystal structure of human mPGES-1 to 1.2 Å resolution. The structure reveals three well-defined active site cavities within the membrane-spanning region in each monomer interface of the trimeric structure. An important determinant of the active site cavity is a small cytosolic domain inserted between transmembrane helices I and II. This extra domain is not observed in other structures of proteins within the MAPEG (Membrane-Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily but is likely to be present also in microsomal GST-1 based on sequence similarity. An unexpected feature of the structure is a 16-Å-deep cone-shaped cavity extending from the cytosolic side into the membrane-spanning region. We suggest a potential role for this cavity in substrate access. Based on the structure of the active site, we propose a catalytic mechanism in which serine 127 plays a key role. We have also determined the structure of mPGES-1 in complex with a glutathione-based analog, providing insight into mPGES-1 flexibility and potential for structure-based drug design.


Sujet(s)
Intramolecular oxidoreductases/composition chimique , Séquence d'acides aminés , Domaine catalytique , Cristallographie aux rayons X , Conception de médicament , Antienzymes/pharmacologie , Glutathion/analogues et dérivés , Glutathion/composition chimique , Humains , Intramolecular oxidoreductases/antagonistes et inhibiteurs , Intramolecular oxidoreductases/génétique , Microsomes/enzymologie , Modèles moléculaires , Données de séquences moléculaires , Prostaglandin-E synthases , Motifs et domaines d'intéraction protéique , Structure quaternaire des protéines , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Similitude de séquences d'acides aminés
11.
J Synchrotron Radiat ; 19(Pt 2): 288-9, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-22338692

RÉSUMÉ

Currently there is no rack system for the long-term storage of SPINE pucks in spite of their commercial availability and heavy usage at the ESRF. The only way to store pucks is in transport dewar canisters which presents a number of limitations and drawbacks. Here a simple affordable rack for storing SPINE pucks is described, which we believe is accessible to not only synchrotrons but also both academic and industrial research laboratories.


Sujet(s)
Conception d'appareillage , Synchrotrons/instrumentation , Laboratoire automatique/instrumentation , Basse température , Cristallographie aux rayons X/instrumentation , Azote
12.
Bioorg Med Chem Lett ; 22(5): 1854-9, 2012 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-22325942

RÉSUMÉ

The evaluation of a series of bicyclic aminoimidazoles as potent BACE-1 inhibitors is described. The crystal structures of compounds 14 and 23 in complex with BACE-1 reveal hydrogen bond interactions with the protein important for achieving potent inhibition. The optimization of permeability and efflux properties of the compounds is discussed as well as the importance of these properties for attaining in vivo brain efficacy. Compound (R)-25 was selected for evaluation in vivo in wild type mice and 1.5h after oral co-administration of 300µmol/kg (R)-25 and efflux inhibitor GF120918 the brain Aß40 level was reduced by 17% and the plasma Aß40 level by 76%.


Sujet(s)
Maladie d'Alzheimer/enzymologie , Amyloid precursor protein secretases/antagonistes et inhibiteurs , Encéphale/effets des médicaments et des substances chimiques , Imidazoles/composition chimique , Imidazoles/pharmacologie , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/métabolisme , Amines/composition chimique , Amines/pharmacocinétique , Amines/pharmacologie , Amyloid precursor protein secretases/métabolisme , Peptides bêta-amyloïdes/métabolisme , Animaux , Aspartic acid endopeptidases/antagonistes et inhibiteurs , Aspartic acid endopeptidases/métabolisme , Encéphale/enzymologie , Encéphale/métabolisme , Lignée cellulaire , Cristallographie aux rayons X , Imidazoles/pharmacocinétique , Souris , Souris de lignée C57BL , Modèles moléculaires , Fragments peptidiques/métabolisme
13.
J Mol Biol ; 321(2): 329-39, 2002 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-12144789

RÉSUMÉ

The structure of cytochrome c oxidase from Rhodobacter sphaeroides has been solved at 2.3/2.8A (anisotropic resolution). This high-resolution structure revealed atomic details of a bacterial terminal oxidase including water molecule positions and a potential oxygen pathway, which has not been reported in other oxidase structures. A comparative study of the wild-type and the EQ(I-286) mutant enzyme revealed structural rearrangements around E(I-286) that could be crucial for proton transfer in this enzyme. In the structure of the mutant enzyme, EQ(I-286), which cannot transfer protons during oxygen reduction, the side-chain of Q(I-286) does not have the hydrogen bond to the carbonyl oxygen of M(I-107) that is seen in the wild-type structure. Furthermore, the Q(I-286) mutant has a different arrangement of water molecules and residues in the vicinity of the Q side-chain. These differences between the structures could reflect conformational changes that take place upon deprotonation of E(I-286) during turnover of the wild-type enzyme, which could be part of the proton-pumping machinery of the enzyme.


Sujet(s)
Complexe IV de la chaîne respiratoire/composition chimique , Complexe IV de la chaîne respiratoire/génétique , Mutation/génétique , Rhodobacter sphaeroides/enzymologie , Sites de fixation , Catalyse , Cuivre/métabolisme , Cristallographie aux rayons X , Complexe IV de la chaîne respiratoire/métabolisme , Liaison hydrogène , Ligands , Modèles moléculaires , Oxydoréduction , Oxygène/métabolisme , Conformation des protéines , Sous-unités de protéines , Protons , Rhodobacter sphaeroides/génétique , Eau/métabolisme , Xénon/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE