Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Curr Genet ; 43(4): 273-80, 2003 Jul.
Article de Anglais | MEDLINE | ID: mdl-12707717

RÉSUMÉ

The analysis of the Schizosaccharomyces pombe genome revealed the presence of 14 putative P-type ATPases. The clustering of ATPases resembles that of Saccharomyces cerevisiae, indicating that the main classes of pumps were already present before the split of the Archiascomycetes from the other Ascomycota. The overall amino acid identity between fission and budding yeast P-type ATPases is generally low (30-50%). This is similar to the fungus-plant and fungus-animal comparisons, suggesting that fungal ATPases underwent an extensive process of diversification. Unlike Sac. cerevisiae, fission yeast lacks Na(+)-ATPases, has a single heavy-metal ATPase and three ATPases of unknown specificity. The observed divergence within these fungi might reflect physiological differences, including adaptation to environmental stresses.


Sujet(s)
Adenosine triphosphatases/biosynthèse , Adenosine triphosphatases/composition chimique , Schizosaccharomyces/enzymologie , Adenosine triphosphatases/classification , Adenosine triphosphatases/génétique , Séquence d'acides aminés , Transport biologique , Calcium/métabolisme , Membrane cellulaire/métabolisme , Protéines fongiques , Gènes fongiques , Génome fongique , Données de séquences moléculaires , Cadres ouverts de lecture , Phylogenèse , Similitude de séquences d'acides aminés
2.
J Cell Biol ; 157(6): 1029-39, 2002 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-12058018

RÉSUMÉ

Here we describe the phenotypic characterization of the cta4+ gene, encoding a novel member of the P4 family of P-type ATPases of fission yeast. The cta4Delta mutant is temperature sensitive and cold sensitive lethal and displays several morphological defects in cell polarity and cytokinesis. Microtubules are generally destabilized in cells lacking Cta4p. The microtubule length is decreased, and the number of microtubules per cell is increased. This is concomitant with an increase in the number of microtubule catastrophe events in the midzone of the cell. These defects are likely due to a general imbalance in cation homeostasis. Immunofluorescence microscopy and membrane fractionation experiments revealed that green fluorescent protein-tagged Cta4 localizes to the ER. Fluorescence resonance energy transfer experiments in living cells using the yellow cameleon indicator for Ca2+ indicated that Cta4p regulates the cellular Ca2+ concentration. Thus, our results reveal a link between cation homeostasis and the control of cell shape, microtubule dynamics, and cytokinesis, and appoint Ca2+ as a key ion in controlling these processes.


Sujet(s)
Adenosine triphosphatases/métabolisme , Protéines bactériennes/métabolisme , Taille de la cellule , Microtubules/physiologie , Protéines de Schizosaccharomyces pombe/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Calcium/métabolisme , Calcium-Transporting ATPases , Division cellulaire , Noyau de la cellule/métabolisme , Polarité de la cellule , Homéostasie , Mutation , Schizosaccharomyces , Température
3.
Braz J Med Biol Res ; 35(5): 499-507, 2002 May.
Article de Anglais | MEDLINE | ID: mdl-12011934

RÉSUMÉ

Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.


Sujet(s)
Centromère/ultrastructure , Histone/métabolisme , Animaux , Séquence nucléotidique , Centromère/génétique , ADN fongique/composition chimique , Protéines de Drosophila/composition chimique , Protéines de Drosophila/ultrastructure , Drosophila melanogaster/cytologie , Drosophila melanogaster/génétique , Protéines fongiques/composition chimique , Protéines fongiques/ultrastructure , Humains , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Schizosaccharomyces/cytologie , Schizosaccharomyces/génétique , Spécificité d'espèce
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE