Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nanotechnology ; 23(40): 405708, 2012 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-23001418

RÉSUMÉ

We demonstrate that it is possible to mechanically exfoliate graphene under ultrahigh vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint, in agreement with calculated data. Single-layer graphene is investigated by Raman mapping. The graphene and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of n(h) ~/= 6 × 10(12) cm(-2). The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.

2.
Nanotechnology ; 20(15): 155601, 2009 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-19420549

RÉSUMÉ

We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO(3), TiO(2), Al(2)O(3) and CaF(2) by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO(2) substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO(2)) and C = -8.8% (G/CaF(2)). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d(SLG) = 0.34 nm and thus much smaller than on SiO(2).

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...