Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Schizophrenia (Heidelb) ; 8(1): 34, 2022 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-35853896

RÉSUMÉ

Memories are not formed in isolation. They are associated and organized into relational knowledge structures that allow coherent thought. Failure to express such coherent thought is a key hallmark of Schizophrenia. Here we explore the hypothesis that thought disorder arises from disorganized Hippocampal cognitive maps. In doing so, we combine insights from two key lines of investigation, one concerning the neural signatures of cognitive mapping, and another that seeks to understand lower-level cellular mechanisms of cognition within a dynamical systems framework. Specifically, we propose that multiple distinct pathological pathways converge on the shallowing of Hippocampal attractors, giving rise to disorganized Hippocampal cognitive maps and driving conceptual disorganization. We discuss the available evidence at the computational, behavioural, network, and cellular levels. We also outline testable predictions from this framework, including how it could unify major chemical and psychological theories of schizophrenia and how it can provide a rationale for understanding the aetiology and treatment of the disease.

2.
Nat Neurosci ; 24(5): 694-704, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33782620

RÉSUMÉ

Neural correlates of external variables provide potential internal codes that guide an animal's behavior. Notably, first-order features of neural activity, such as single-neuron firing rates, have been implicated in encoding information. However, the extent to which higher-order features, such as multineuron coactivity, play primary roles in encoding information or secondary roles in supporting single-neuron codes remains unclear. Here, we show that millisecond-timescale coactivity among hippocampal CA1 neurons discriminates distinct, short-lived behavioral contingencies. This contingency discrimination was unrelated to the tuning of individual neurons, but was instead an emergent property of their coactivity. Contingency-discriminating patterns were reactivated offline after learning, and their reinstatement predicted trial-by-trial memory performance. Moreover, optogenetic suppression of inputs from the upstream CA3 region during learning impaired coactivity-based contingency information in the CA1 and subsequent dynamic memory retrieval. These findings identify millisecond-timescale coactivity as a primary feature of neural firing that encodes behaviorally relevant variables and supports memory retrieval.


Sujet(s)
Région CA1 de l'hippocampe/physiologie , Mémoire/physiologie , Neurones/physiologie , Animaux , Apprentissage/physiologie , Rappel mnésique/physiologie , Souris , Modèles neurologiques , Optogénétique
3.
Nat Neurosci ; 24(3): 326-330, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33603228

RÉSUMÉ

By investigating the topology of neuronal co-activity, we found that mnemonic information spans multiple operational axes in the mouse hippocampus network. High-activity principal cells form the core of each memory along a first axis, segregating spatial contexts and novelty. Low-activity cells join co-activity motifs across behavioral events and enable their crosstalk along two other axes. This reveals an organizational principle for continuous integration and interaction of hippocampal memories.


Sujet(s)
Conditionnement opérant/physiologie , Hippocampe/physiologie , Mémoire/physiologie , Réseau nerveux/physiologie , Neurones/physiologie , Saccharose/administration et posologie , Potentiels d'action/effets des médicaments et des substances chimiques , Potentiels d'action/physiologie , Animaux , Conditionnement opérant/effets des médicaments et des substances chimiques , Hippocampe/effets des médicaments et des substances chimiques , Mémoire/effets des médicaments et des substances chimiques , Souris , Réseau nerveux/effets des médicaments et des substances chimiques , Neurones/effets des médicaments et des substances chimiques
4.
Cell ; 176(6): 1393-1406.e16, 2019 03 07.
Article de Anglais | MEDLINE | ID: mdl-30773318

RÉSUMÉ

Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1→NAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1→NAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior.


Sujet(s)
Comportement appétitif/physiologie , Mémoire/physiologie , Noyau accumbens/physiologie , Animaux , Région CA1 de l'hippocampe/physiologie , Cellules HEK293 , Hippocampe/physiologie , Humains , Interneurones/physiologie , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Neurones/physiologie , Cellules pyramidales/physiologie , Récompense , Lobe temporal/physiologie
5.
Cell Rep ; 16(8): 2259-2268, 2016 08 23.
Article de Anglais | MEDLINE | ID: mdl-27524609

RÉSUMÉ

Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals.


Sujet(s)
Protéines d'archée/génétique , Région CA1 de l'hippocampe/physiologie , Région CA3 de l'hippocampe/physiologie , Mémoire à long terme/physiologie , Terminaisons présynaptiques/physiologie , Transmission synaptique/physiologie , Adenoviridae/génétique , Adenoviridae/métabolisme , Animaux , Protéines d'archée/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Expression des gènes , Vecteurs génétiques/composition chimique , Vecteurs génétiques/métabolisme , Concentration en ions d'hydrogène , Injections ventriculaires , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Mâle , Souris , Souris de lignée C57BL , Plasticité neuronale/physiologie , Imagerie optique , Optogénétique/méthodes , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Techniques stéréotaxiques
6.
Neuroscientist ; 21(5): 490-502, 2015 Oct.
Article de Anglais | MEDLINE | ID: mdl-25239943

RÉSUMÉ

All synapses are not the same. They differ in their morphology, molecular constituents, and malleability. A striking left-right asymmetry in the distribution of different types of synapse was recently uncovered at the CA3-CA1 projection in the mouse hippocampus, whereby afferents from the CA3 in the left hemisphere innervate small, highly plastic synapses on the apical dendrites of CA1 pyramidal neurons, whereas those originating from the right CA3 target larger, more stable synapses. Activity-dependent modification of these synapses is thought to participate in circuit formation and remodeling during development, and further plastic changes may support memory encoding in adulthood. Therefore, exploiting the CA3-CA1 asymmetry provides a promising opportunity to investigate the roles that different types of synapse play in these fundamental properties of the CNS. Here we describe the discovery of these segregated synaptic populations in the mouse hippocampus, and discuss what we have already learnt about synaptic plasticity from this asymmetric arrangement. We then propose models for how the asymmetry could be generated during development, and how the adult hippocampus might use these distinct populations of synapses differentially during learning and memory. Finally, we outline the potential implications of this left-right asymmetry for human hippocampal function, as well as dysfunction in memory disorders such as Alzheimer's disease.


Sujet(s)
Hippocampe/physiologie , Mémoire/physiologie , Plasticité neuronale/physiologie , Cellules pyramidales/physiologie , Synapses/physiologie , Animaux , Humains , Apprentissage/physiologie
7.
Proc Natl Acad Sci U S A ; 111(42): 15238-43, 2014 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-25246561

RÉSUMÉ

Left-right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3-CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left-right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left-right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory.


Sujet(s)
Région CA3 de l'hippocampe/physiologie , Mémoire/physiologie , Animaux , Comportement animal , Cartographie cérébrale , Dependovirus , Extinction de l'expression des gènes , Halorhodopsines/métabolisme , Potentialisation à long terme/physiologie , Mâle , Souris , Souris de lignée C57BL , Plasticité neuronale/physiologie , Cellules pyramidales/physiologie , Mémoire spatiale , Synapses/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...