Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Innovation (Camb) ; 5(3): 100626, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38699777

RÉSUMÉ

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.

2.
Biosens Bioelectron ; 222: 114934, 2023 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-36455371

RÉSUMÉ

Stereochemical analysis is essential for understanding the complex function of biomolecules. Various direct and indirect approaches can be used to explore the allosteric configuration. However, the size, cost, and delicate nature of these systems limit their biomedical usage. Here, we constructed elliptical dichroism (ED) spectrometer for biomedical applications, whose performance is validated by experiment and theoretical simulation (Jones/Mueller calculus and time-dependent density-functional theory). Instead of complicated control of circular polarization, ED spectrometer adopted the absorbance of left- and right-oriented elliptically polarized light. With a simplified design, we demonstrated the potential of ED spectrometry as an alternative for secondary structural analysis of biomolecules, their conformation and chirality. It not only provides a portable, low-cost alternative to the sophisticated instruments currently used for structural analysis of biomolecules but also provides superior translational features: low sample consumption(200 µl), easy operation, and multiple working modes, for noninvasive cancer detection.


Sujet(s)
Techniques de biocapteur , Tumeurs du pancréas , Humains , Dichroïsme circulaire , Réfractométrie , Conformation moléculaire , Tumeurs du pancréas/diagnostic
3.
ACS Sens ; 6(12): 4489-4498, 2021 12 24.
Article de Anglais | MEDLINE | ID: mdl-34846848

RÉSUMÉ

Tumor-derived extracellular vesicles (EVs) are under intensive study for their potential as noninvasive diagnosis biomarkers. Most EV-based cancer diagnostic assays trace supernumerary of a single cancer-associated marker or marker signatures. These types of biomarker assays are either subtype-specific or vulnerable to be masked by high background signals. In this study, we introduce using the ß-sheet richness (BR) of the tumor-derived EVs as an effective way to discriminate EVs originating from malignant and nonmalignant cells, where EV contents are evaluated as a collective attribute rather than single factors. Circular dichroism, Fourier transform infrared spectroscopy, fluorescence staining assays, and a de novo workflow combining proteomics, bioinformatics, and protein folding simulations were employed to validate the collective attribute at both cellular and EV levels. Based on the BR of the tumorous EVs, we integrated immunoprecipitation and fluorescence labeling targeting the circulating tumor-derived EVs in serum and developed the process into a clinical assay, named EvIPThT. The assay can distinguish patients with and without malignant disease in a pilot cohort, with weak correlations to prognosis biomarkers, suggesting the potential for a cancer screening panel with existing prognostic biomarkers to improve overall performance.


Sujet(s)
Vésicules extracellulaires , Tumeurs du pancréas , Marqueurs biologiques tumoraux , Dépistage précoce du cancer , Humains , Tumeurs du pancréas/diagnostic , Structure en brin bêta
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE