Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 88
Filtrer
1.
Eur Neuropsychopharmacol ; 87: 35-55, 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39079257

RÉSUMÉ

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.

2.
J Neurochem ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38970299

RÉSUMÉ

Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.

3.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38830841

RÉSUMÉ

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Sujet(s)
Foetus , Lipopolysaccharides , Foie , Poumon , Placenta , Femelle , Grossesse , Placenta/métabolisme , Placenta/immunologie , Animaux , Foetus/immunologie , Foetus/métabolisme , Poumon/immunologie , Poumon/métabolisme , Foie/métabolisme , Foie/immunologie , Acide docosahexaénoïque/métabolisme , Protéine-3 suppressive de la signalisation des cytokine/métabolisme , Protéine-3 suppressive de la signalisation des cytokine/génétique , Souris , Inflammation/immunologie , Inflammation/métabolisme , Souris de lignée C57BL , Adaptation physiologique/immunologie , Développement foetal/immunologie , Échange foetomaternel/immunologie , Interleukine-6/métabolisme , Interleukine-6/immunologie
4.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-37854625

RÉSUMÉ

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

5.
Mol Brain ; 16(1): 69, 2023 09 25.
Article de Anglais | MEDLINE | ID: mdl-37749596

RÉSUMÉ

Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.


Sujet(s)
Protéines d'activation de la GTPase , Consolidation de la mémoire , Animaux , Souris , Rats , Dopamine , Acide glutamique , Hippocampe , Locus ceruleus , Récepteur de l'AMPA
6.
Eur Neuropsychopharmacol ; 74: 32-46, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37263043

RÉSUMÉ

Disruption of brain development early in life may underlie the neurobiology behind schizophrenia. We have reported more immature synaptic spines in the frontal cortex (FC) of adult Roman High-Avoidance (RHA-I) rats, a behavioural model displaying schizophrenia-like traits. Here, we performed a whole transcriptome analysis in the FC of 4 months old male RHA-I (n=8) and its counterpart, the Roman Low-Avoidance (RLA-I) (n=8). We identified 203 significant genes with overrepresentation of genes involved in synaptic function. Next, we performed a gene set enrichment analysis (GSEA) for genes co-expressed during neurodevelopment. Gene networks were obtained by weighted gene co-expression network analysis (WGCNA) of a transcriptomic dataset containing human FC during lifespan (n=269). Out of thirty-one functional gene networks, six were significantly enriched in the RHA-I. These were differentially regulated during infancy and enriched in biological ontologies related to myelination, synaptic function, and immune response. We validated differential gene expression in a new cohort of adolescent (<=2 months old) and young-adult (>=3 months old) RHA-I and RLA-I rats. The results confirmed overexpression of Gsn, Nt5cd1, Ppp1r1b, and Slc9a3r1 in young-adult RHA-I, while Cables1, a regulator of Cdk5 phosphorylation in actin regulation and involved in synaptic plasticity and maturation, was significantly downregulated in adolescent RHA-I. This age-related expression change was also observed for presynaptic components Snap25 and Snap29. Our results show a different maturational expression profile of synaptic components in the RHA-I strain, supporting a shift in FC maturation underlying schizophrenia-like behavioural traits and adding construct validity to this strain as a neurodevelopmental model.


Sujet(s)
Schizophrénie , Humains , Rats , Mâle , Animaux , Adolescent , Nourrisson , Schizophrénie/génétique , Lobe frontal , Phosphorylation , Analyse de profil d'expression de gènes , Apprentissage par évitement/physiologie , Protéines Qb-SNARE , Protéines Qc-SNARE
8.
Eur Neuropsychopharmacol ; 72: 9-17, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37040689

RÉSUMÉ

Depression is a widespread disorder with a significant burden on individuals and society. There are various available treatments for patients with depression. However, not all patients respond adequately to their treatment. Recently, the opioid system has regained interest in depression studies. Research in animals and humans suggest that blocking the kappa opioid receptor (KOR) may potentially alleviate the symptoms of depression. The mechanism behind this effect is not fully understood. Stress and alterations in hypothalamic-pituitary-adrenal axis (HPA-axis) activity are thought to play a crucial role in depression. This study aimed to characterize stress hormones and stress-related protein expression following activation of KOR using a selective agonist. The longitudinal effect was investigated 24 h after KOR activation using the selective agonist U50,488 in Sprague Dawley rats. Stress-related hormones and protein expression patterns were explored using multiplex bead-based assays and western blotting. We found that KOR activation caused an increase in both adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in serum. Regarding protein assays in different brain regions, phosphorylated glucocorticoid receptors also increased significantly in thalamus (THL), hypothalamus (HTH), and striatum (STR). C-Fos increased time-dependently in THL following KOR activation, extracellular signal-regulated kinases 1/2 (ERK1/2) increased significantly in STR and amygdala (AMG), while phosphorylated ERK1/2 decreased during the first 2 h and then increased again in AMG and prefrontal cortex (PFC). This study shows that KOR activation alters the HPA axis and ERK signaling which may cause to develop mood disorders.


Sujet(s)
Analgésiques morphiniques , Axe hypothalamohypophysaire , Humains , Rats , Animaux , Axe hypothalamohypophysaire/métabolisme , Analgésiques morphiniques/pharmacologie , Rat Sprague-Dawley , Dépression/traitement médicamenteux , Axe hypophyso-surrénalien/métabolisme , Encéphale/métabolisme , Hormone corticotrope/métabolisme , Hormone corticotrope/pharmacologie
9.
Acta Neuropsychiatr ; 35(6): 315-327, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-36896595

RÉSUMÉ

Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.


Sujet(s)
Dépression , Acide gamma-amino-butyrique , Grossesse , Femelle , Rats , Animaux , Acide gamma-amino-butyrique/métabolisme , Poids de naissance , Glucocorticoïdes/métabolisme , Hippocampe/métabolisme , Récepteurs GABA-A/métabolisme
10.
Compr Psychoneuroendocrinol ; 13: 100163, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36545240

RÉSUMÉ

Rationale: Psilocybin is a serotonergic psychedelic that has gained prominent attention recently as a potential therapeutic for neuropsychiatric disorders including Major Depressive Disorder. Pre-clinical and initial studies in humans suggest that serotonin 2A receptor agonists, including serotonergic psychedelics, have anti-inflammatory effects. This may contribute to its therapeutic effects as previous studies indicate a link between neuropsychiatric disorders and inflammatory processes. However, the effect of psilocybin on biomarkers of inflammation has not been evaluated in humans. Objectives: Investigate the effect of a single dose of psilocybin on peripheral biomarkers of inflammation in healthy humans. Methods: Blood samples were collected from 16 healthy participants before and one day after the administration of a single oral dose of psilocybin (mean dose: 0.22 mg/kg) and subsequently analyzed for concentrations of high-sensitivity C-reactive protein (hsCRP), tumor-necrosis-factor (TNF) and soluble urokinase plasminogen activator receptor (suPAR). Change in inflammatory markers was evaluated using a paired t-test where p < 0.05 was considered statistically significant. Results: We did not observe statistically significant changes in any of the above biomarkers of inflammation (all Cohen's d ≤ 0.31; all p ≥ 0.23). Conclusions: Our data do not support that a single dose of psilocybin reduces biomarkers of inflammation in healthy individuals one day after administration. Nevertheless, we suggest that future studies consider additional markers of inflammation, including markers of neuroinflammation, and evaluate potential anti-inflammatory effects of psilocybin therapy in clinical cohorts where more prominent effects may be observable.

11.
Eur Neuropsychopharmacol ; 65: 56-67, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36375239

RÉSUMÉ

There is a pressing need to identify biological indicators of major depression to help guide proper diagnosis and optimize treatment. Animal models mimicking aspects of depression constitute essential tools for early-stage exploration of relevant pathways. In this study, we used the Flinders Sensitive and Resistant Line (FSL/FRL) to explore central and peripheral transcriptional changes in vascular endothelial growth factor (VEGF) pathway genes and their temporal regulation after a single dose of S-ketamine (15 mg/kg). We found that S-ketamine induced both rapid (1 hour) and sustained (2 and 14 days) antidepressant-like effects in the FSL rats. Analysis of mRNA expression revealed significant strain effects of Vegf, Vegf164, Vegfr-1, Nrp1, Nrp2, Rictor, and Raptor in the prefrontal cortex (PFC) and of Vegf164, GbetaL, and Tsc1 in the hippocampus (HIP), which indicates suppression of VEGF signaling in the FSL rats compared to FRL rats. This notion was further substantiated by reduced expression of Vegf and Mtor in plasma from FSL rats. In the brain, S-ketamine induced transcriptional changes in the acute phase, not the sustained phase. There were significant treatment effects of S-ketamine on Vegfr-2 in both PFC and HIP and on Vegf and Vegfr-1 in HIP. Moreover, we found that S-ketamine specifically restored reduced levels of Nrp2 and Mtor in the PFC of the FSL rats. In conclusion, this study substantiates the use of the FRL/FSL rats to explore the depressive-like behavior at the transcriptional level of the VEGF pathway genes and study their regulation in response to various treatment paradigms.


Sujet(s)
Trouble dépressif majeur , Facteur de croissance endothéliale vasculaire de type A , Animaux , Rats , Récepteur-1 au facteur croissance endothéliale vasculaire/métabolisme , Cortex préfrontal/métabolisme , Trouble dépressif majeur/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Modèles animaux de maladie humaine , Dépression/métabolisme
12.
Methods Mol Biol ; 2417: 59-68, 2022.
Article de Anglais | MEDLINE | ID: mdl-35099791

RÉSUMÉ

For many years real-time quantitative polymerase chain reaction (qPCR) has been the golden standard to measure gene expression levels in brain tissue. However, today it is generally accepted that many factors may affect the outcome of the study and more consensus is required to perform and interpret real-time qPCR experiments in a comparable way. Here we describe the basic techniques used for more than a decade in our laboratory to extract RNA and protein from the same piece of frozen brain tissue and to quantify relative mRNA levels with real-time qPCR and SYBR Green.


Sujet(s)
ARN , Vésicules synaptiques , Animaux , Encéphale/métabolisme , ARN messager/métabolisme , Rats , Réaction de polymérisation en chaine en temps réel/méthodes , Vésicules synaptiques/métabolisme
13.
Eur Neuropsychopharmacol ; 54: 116-125, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-34598835

RÉSUMÉ

Inflammation may correlate with a specific subgroup of depression and differential antidepressant response, but no trial has studied changes of many inflammatory markers over several time points and evaluated symptom-specific antidepressant response and long-term prognosis. We performed secondary analyses among 90 outpatients with moderate-severe depression (71% female, mean age 38 years) treated for 26 weeks with escitalopram or nortriptyline. We measured 27 pro- and anti-inflammatory markers at week 0, 8, 12, and 26 and calculated composite inflammation scores. Three depression rating scales were applied and symptom dimensions of depression calculated. Via Danish nationwide registers, 10 years follow-up were included on psychiatric hospital contacts, indicating relapse. Pearson correlation analyses were performed between baseline inflammatory markers and depressive symptom severity, mixed effects models during the 26-week trial, and Cox regression analyses for the register-based outcomes, adjusted for age, sex, BMI, and smoking. Baseline inflammatory markers correlated with differential severity on specific symptom dimensions but not with overall depression severity. A total of 17 of 27 inflammatory markers decreased significantly during treatment. We found no correlation between baseline nor change in inflammatory markers nor composite inflammation scores with differential treatment response on the MADRS, but small correlations between changes in inflammatory markers and differential response on neurovegetative symptoms. Findings were similar among 59 treatment-naïve patients. Inflammatory markers were not associated with differential risks for 10-year relapse. These findings support the importance of studying specific depressive symptoms to further explore the correlation between inflammation with differential antidepressant response in a subgroup of depression. Clinical Trial Registration number: GENDEP is registered at EudraCT2004-001723-38 (http://eudract.emea.europa.eu) and ISRCTN03693000 (www.controlled-trials.com).


Sujet(s)
Dépression , Trouble dépressif majeur , Adulte , Antidépresseurs/usage thérapeutique , Marqueurs biologiques , Citalopram/usage thérapeutique , Dépression/traitement médicamenteux , Trouble dépressif majeur/traitement médicamenteux , Femelle , Humains , Inflammation/traitement médicamenteux , Mâle , Pronostic , Récidive , Résultat thérapeutique
14.
Clin Epigenetics ; 13(1): 200, 2021 10 29.
Article de Anglais | MEDLINE | ID: mdl-34715912

RÉSUMÉ

BACKGROUND: Depression is a common, complex, and debilitating mental disorder estimated to be under-diagnosed and insufficiently treated in society. Liability to depression is influenced by both genetic and environmental risk factors, which are both capable of impacting DNA methylation (DNAm). Accordingly, numerous studies have researched for DNAm signatures of this disorder. Recently, an epigenome-wide association study of monozygotic twins identified an association between DNAm status in the KLK8 (neuropsin) promoter region and severity of depression symptomatology. METHODS: In this study, we aimed to investigate: (i) if blood DNAm levels, quantified by pyrosequencing, at two CpG sites in the KLK8 promoter are associated with depression symptomatology and depression diagnosis in an independent clinical cohort and (ii) if KLK8 DNAm levels are associated with depression, postpartum depression, and depression symptomatology in four independent methylomic cohorts, with blood and brain DNAm quantified by either MBD-seq or 450 k methylation array. RESULTS: DNAm levels in KLK8 were not significantly different between depression cases and controls, and were not significantly associated with any of the depression symptomatology scores after correction for multiple testing (minimum p value for KLK8 CpG1 = 0.12 for 'Depressed mood,' and for CpG2 = 0.03 for 'Loss of self-confidence with other people'). However, investigation of the link between KLK8 promoter DNAm levels and depression-related phenotypes collected from four methylomic cohorts identified significant association (p value < 0.05) between severity of depression symptomatology and blood DNAm levels at seven CpG sites. CONCLUSIONS: Our findings suggest that variance in blood DNAm levels in KLK8 promoter region is associated with severity of depression symptoms, but not depression diagnosis.


Sujet(s)
Méthylation de l'ADN/génétique , Dépression/diagnostic , Kallicréines/analyse , Kallicréines/génétique , Sujet âgé , Dépression/psychologie , Femelle , Séquençage nucléotidique à haut débit/méthodes , Séquençage nucléotidique à haut débit/statistiques et données numériques , Humains , Mâle , Adulte d'âge moyen
15.
Sci Rep ; 11(1): 9113, 2021 04 27.
Article de Anglais | MEDLINE | ID: mdl-33907240

RÉSUMÉ

Depression-associated cognitive impairments are among the most prevalent and persistent symptoms during remission from a depressive episode and a major risk factor for relapse. Consequently, development of antidepressant drugs, which also alleviate cognitive impairments, is vital. One such potential antidepressant is vortioxetine that has been postulated to exhibit both antidepressant and pro-cognitive effects. Hence, we tested vortioxetine for combined antidepressant and pro-cognitive effects in male Long-Evans rats exposed to the chronic mild stress (CMS) paradigm. This well-established CMS paradigm evokes cognitive deficits in addition to anhedonia, a core symptom of depression. Learning and memory performance was assessed in the translational touchscreen version of the paired-associates learning task. To identify the mechanistic underpinning of the neurobehavioural results, transcriptional profiling of genes involved in the stress response, neuronal plasticity and genes of broad relevance in neuropsychiatric pathologies were assessed. Vortioxetine substantially relieved the anhedonic-like state in the CMS rats and promoted acquisition of the cognitive test independent of hedonic phenotype, potentially due to an altered cognitive strategy. Minor alterations in gene expression profiling in prefrontal cortex and hippocampus were found. In summary, our findings suggest that vortioxetine exhibits an antidepressant effect as well as behavioural changes in a translational learning task.


Sujet(s)
Antidépresseurs/pharmacologie , Cognition/effets des médicaments et des substances chimiques , Vortioxétine/pharmacologie , Anhédonie/effets des médicaments et des substances chimiques , Animaux , Cortex cérébral/effets des médicaments et des substances chimiques , Cortex cérébral/physiologie , Expression des gènes/effets des médicaments et des substances chimiques , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/physiologie , Apprentissage , Mâle , Rat Long-Evans , Stress physiologique
16.
Nutrients ; 14(1)2021 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-35011001

RÉSUMÉ

Findings of the effect of high-fat feeding including "Cafeteria Diets" (CAF) on brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and prefrontal cortex (PFC) in rodents are conflicting. CAF is a non-standardized, highly palatable energy-rich diet composed by everyday food items for human consumption and is known to induce metabolic syndrome and obesity in rats. However, the highly palatable nature of CAF may counteract a negative effect of chronic stress on anticipatory behavior and synaptic plasticity in the hippocampus, hence represent a confounding factor (e.g., when evaluating functional effects on the brain). This study investigated the effects of a chronic, restricted access to CAF on BDNF, monoamine neurotransmitters, and redox imbalance in HIP and PFC in male rats. Our results show that CAF induced BDNF and its receptor TrkB in PFC compared to the controls (p < 0.0005). No differences in monoamine neurotransmitters were detected in either PFC or HIP. CAF increased dehydroascorbic acid and decreased malondialdehyde in PFC (p < 0.05), suggesting an early redox imbalance insufficient to induce lipid peroxidation. This study supports that a chronic CAF on a restricted schedule increases BDNF levels in the PFC of rats, highlighting that this may be a suboptimal feeding regime when investigating the effects of diet-induced obesity in the brain and emphasizing this as a point of attention when comparing the findings.


Sujet(s)
Facteur neurotrophique dérivé du cerveau/métabolisme , Alimentation riche en graisse/effets indésirables , Consommation alimentaire/physiologie , Hippocampe/métabolisme , Cortex préfrontal/métabolisme , Animaux , Mâle , Agents neuromédiateurs/métabolisme , Oxydoréduction , Rats , Rat Sprague-Dawley , Récepteur trkB/métabolisme
17.
J Psychopharmacol ; 35(4): 483-493, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33143539

RÉSUMÉ

BACKGROUND: Psilocybin is a serotonergic psychedelic found in "magic mushrooms" with a putative therapeutic potential for treatment-resistant depression, anxiety, obsessive-compulsive disorder, and addiction. In rodents, psilocybin acutely induces plasticity-related immediate early genes in cortical tissue; however, studies into the effects on subcortical regions, of different doses, and the subsequent translation of corresponding proteins are lacking. METHODS: We examined the acute effects of a single administration of psilocybin (0.5-20 mg/kg) on the expression of selected genes in the prefrontal cortex and hippocampus. In total, 46 target genes and eight reference genes were assessed using real-time quantitative polymerase chain reaction. Corresponding protein levels of the three most commonly regulated genes were assessed using Western blotting. RESULTS: In the prefrontal cortex, psilocybin increased the expression of Cebpb, c-Fos, Dups1, Fosb, Junb, Iκß-α, Nr4a1, P11, Psd95, and Sgk1, and decreased the expression of Clk1. In the hippocampus, psilocybin strongly increased the expression of Arrdc2, Dusp1, Iκß-α, and Sgk1 in a dose-dependent manner, and decreased the expression of Arc, Clk1, Egr2, and Ptgs2. Protein levels of Sgk1, Dusp1, and Iκß-α showed only partial agreement with transcriptional patterns, stressing the importance of assessing downstream translation when investigating rapid gene responses. CONCLUSION: The present study demonstrates that psilocybin rapidly induces gene expression related to neuroplasticity, biased towards the prefrontal cortex, compared to the hippocampus. Our findings provide further evidence for the rapid plasticity-promoting effects of psilocybin.


Sujet(s)
Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Hippocampe , Plasticité neuronale , Cortex préfrontal , Psilocybine/pharmacologie , Animaux , Protéines du cytosquelette/génétique , Relation dose-effet des médicaments , Facteur de transcription EGR-2/génétique , Gènes précoces , Gènes fos/génétique , Hallucinogènes/pharmacologie , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Protéines de tissu nerveux/génétique , Plasticité neuronale/effets des médicaments et des substances chimiques , Plasticité neuronale/physiologie , Cortex préfrontal/effets des médicaments et des substances chimiques , Cortex préfrontal/métabolisme , Rats , Rat Sprague-Dawley
18.
Article de Anglais | MEDLINE | ID: mdl-32738353

RÉSUMÉ

BACKGROUND: Dysregulated microRNAs (miRNAs) in dermal fibroblasts of depressive subjects, indicate biomarker potential and can possibly aid clinical diagnostics. To overcome methodological challenges related to human experiments and fibroblast cultures, we here validate 38 miRNAs previously observed to be dysregulated in human fibroblasts from depressed subjects, in the skin of four distinct rat models of depression. METHODS: In the presented study male rats from the adrenocorticotropic hormone (ACTH) model (n = 10/group), the chronic mild stress model (n = 10/group), Wistar Kyoto/Wistar Hannover rats (n = 10/group), and Flinders Resistant/Flinders Sensitive Line rats (n = 8/group) were included. Real-time qPCR was utilized to investigate miRNA alterations in flash-frozen skin-biopsies from the ear and fibroblast cultures. RESULTS: In the ACTH rat model of depression, we identified nine dysregulated miRNAs in the skin and three in the fibroblasts. As the skin presented three times the amount of dysregulated miRNAs compared to the fibroblasts, skin instead of fibroblasts were continuously used for studies with the other rat models. In the skin from the four rat models of depression, 15 out of 38 miRNAs re-exhibited significant dysregulation in at least one of the rat models of depression and 67% were regulated in the same direction as in the human study. miR-450a and miR-193a presented dysregulation across rat models and miR-193a and miR-185 exhibited very strong dysregulation (30-fold and 50-fold, respectively). Lastly, an Ingenuity Pathway Analysis indicated functional overlap between dysregulated miRNAs, and common regulated pathways. CONCLUSION: Flash-frozen skin is a valid alternative to fibroblast cultures as the skin appear to retain more of the miRNA dysregulation present in vivo. A sub-population of 15 miRNAs appear to be specific for the depressive phenotype, as they are dysregulated in both human depressed patients and distinct rat models of depression. We propose miR-450a, miR-185, and miR-193a as biomarker candidates of particular interest.


Sujet(s)
Trouble dépressif/métabolisme , microARN/métabolisme , Peau/métabolisme , Animaux , Marqueurs biologiques/métabolisme , Trouble dépressif/génétique , Modèles animaux de maladie humaine , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes , Mâle , microARN/génétique , Phénotype , Rats , Rat Wistar , Stress psychologique/génétique , Stress psychologique/métabolisme
19.
Mol Imaging Biol ; 22(5): 1290-1300, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32514885

RÉSUMÉ

PURPOSE: Loss of neuronal synapse function is associated with a number of brain disorders. The [11C]UCB-J positron emission tomography (PET) tracer allows for in vivo examination of synaptic density, as it binds to synaptic vesicle glycoprotein 2A (SV2A) expressed in presynaptic terminals. Here, we characterise [11C]UCB-J imaging in Göttingen minipigs. PROCEDURES: Using PET imaging, we examined tracer specificity and compared kinetic models. We explored the use of a standard blood curve and centrum semiovale white matter as a reference region. We compared in vivo [11C]UCB-J PET imaging to in vitro autoradiography, Western blotting and real-time quantitative polymerase chain reaction. RESULTS: The uptake kinetics of [11C]UCB-J could be described using a 1-tissue compartment model and blocking of SV2A availability with levetiracetam showed dose-dependent specific binding. Population-based blood curves resulted in reliable [11C]UCB-J binding estimates, while it was not possible to use centrum semiovale white matter as a non-specific reference region. Brain [11C]UCB-J PET signals correlated well with [3H]UCB-J autoradiography and SV2A protein levels. CONCLUSIONS: [11C]UCB-J PET is a valid in vivo marker of synaptic density in the minipig brain, with binding values close to those reported for humans. Minipig models of disease could be valuable for investigating the efficacy of putative neuroprotective agents for preserving synaptic function in future non-invasive, longitudinal studies.


Sujet(s)
Encéphale/imagerie diagnostique , Tomographie par émission de positons , Pyridines/composition chimique , Pyrrolidones/composition chimique , Animaux , Autoradiographie , Imagerie par résonance magnétique , Protéines de tissu nerveux/métabolisme , Suidae , Porc miniature
20.
Neuroscience ; 438: 100-115, 2020 07 01.
Article de Anglais | MEDLINE | ID: mdl-32407976

RÉSUMÉ

Stress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. Male Sprague-Dawley rats were subjected to acute FS-stress, followed by measurement of time-dependent (1, 7 and 14 days) structural plasticity (dendritic arborization, spine number and morphology) in hippocampal CA1 pyramidal neurons and expression patterns of molecular markers implicated in neuronal plasticity. We found that acute stress significantly decreased spine number, dendritic length, and altered spine morphometric parameters at all time points evaluated after stress. This was paralleled by changes in the gene expression of Spinophilin and Cdc42, and protein expression of homer1. Pretreatment with DMI prevented the stress-induced dendritic atrophy and spine loss 14 days after acute FS. However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.


Sujet(s)
Hippocampe , Cellules pyramidales , Animaux , Dendrites , Épines dendritiques , Mâle , Plasticité neuronale , Cortex préfrontal , Rats , Rat Sprague-Dawley
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE