Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathogens ; 12(11)2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-38003829

RÉSUMÉ

The control of ticks through vaccination offers a sustainable alternative to the use of chemicals that cause contamination and the selection of resistant tick strains. However, only a limited number of anti-tick vaccines have reached commercial realization. In this sense, an antigen effective against different tick species is a desirable target for developing such vaccines. A peptide derived from the tick P0 protein (pP0) conjugated to a carrier protein has been demonstrated to be effective against the Rhipicephalus microplus, Rhipicephalus sanguineus, and Amblyomma mixtum tick species. The aim of this work was to assess the efficacy of this peptide when conjugated to the Bm86 protein against Dermacentor nitens and Ixodes ricinus ticks. An RNAi experiment using P0 dsRNA from I. ricinus showed a dramatic reduction in the feeding of injected female ticks on guinea pigs. In the follow-up vaccination experiments, rabbits were immunized with the pP0-Bm86 conjugate and challenged simultaneously with larvae, nymphs, and the adults of I. ricinus ticks. In the same way, horses were immunized with the pP0-Bm86 conjugate and challenged with D. nitens larva. The pP0-Bm86 conjugate showed efficacies of 63% and 55% against I. ricinus and D. nitens ticks, respectively. These results, combined with previous reports of efficacy for this conjugate, show the promising potential for its development as a broad-spectrum anti-tick vaccine.

2.
Ticks Tick Borne Dis ; 14(4): 102170, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-36958097

RÉSUMÉ

Genomes of ticks display reductions, to various extents, in genetic coding for enzymes of the haem biosynthetic pathway. Here, we mined available transcriptomes of soft tick species and identified transcripts encoding only half of the enzymes involved in haem biosynthesis. Transcripts identified across most species examined were those coding for porphobilinogen synthase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Genomic retention of porphobilinogen synthase seems to be soft tick-restricted as no such homologue has been identified in any hard tick species. Bioinformatic mining is thus strongly indicative of the lack of biochemical capacity for de novo haem biosynthesis, suggesting a requirement for dietary haem. In the hard tick Ixodes ricinus, depletion of dietary haem, i.e. serum feeding, leads to oviposition of haem-free eggs, with no apparent embryogenesis and larvae formation. In this work, we show that serum-fed Ornithodoros moubata females, unlike those of I. ricinus, laid haem-containing eggs similarly to blood-fed controls, but only by a small proportion of the serum-fed females. To enhance the effect of dietary haem depletion, O. moubata ticks were serum-fed consecutively as last nymphal instars and females. These females laid eggs with profoundly reduced haem deposits, confirming the host origin of the haem. These data confirm the ability of soft ticks to take up and allocate host haem to their eggs in order to drive reproduction of the ticks.


Sujet(s)
Argasidae , Ixodidae , Ornithodoros , Animaux , Femelle , Hème , Porphobilinogene synthase
3.
Biodivers Data J ; 9: e66112, 2021.
Article de Anglais | MEDLINE | ID: mdl-33948102

RÉSUMÉ

Colletes hederae Schmidt & Westrich, 1993 is a cryptic bee species from the C. succinctus species-group. The previous occurrence and spreading of this species were predominantly in south-western Europe. To determine if the species was spreading in Slovak territory, Hedera helix was monitored from autumn 2015. The ivy-bee was first recorded in Slovakia during autumn 2017. This species is widespread inside and around Bratislava; however, it was not recorded under this study in any sites located eastwards. In the Czech Republic, it was not recorded in the south-east part of the country in 2017-2019. In 2020, the occurrence of this species was confirmed in many localities in the south of the country and strong populations were discovered, especially in the towns Znojmo and Mikulov. The populations likely originated from neighbouring Austria, where this species was discovered in 2006 and the localities are usually less than 100 km away from Czech and Slovak localities. A further survey could map a route of the northwards spread of this species.

4.
Front Vet Sci ; 8: 659786, 2021.
Article de Anglais | MEDLINE | ID: mdl-33842580

RÉSUMÉ

Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.

5.
Parasit Vectors ; 13(1): 311, 2020 Jun 16.
Article de Anglais | MEDLINE | ID: mdl-32546252

RÉSUMÉ

BACKGROUND: The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. METHODS: In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. RESULTS: We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. CONCLUSIONS: Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.


Sujet(s)
Analyse de profil d'expression de gènes , Ixodes/croissance et développement , Ixodes/génétique , Animaux , Comportement alimentaire , Femelle , Étapes du cycle de vie , Nymphe/croissance et développement , Reproduction/génétique
6.
RNA ; 23(8): 1259-1269, 2017 08.
Article de Anglais | MEDLINE | ID: mdl-28473453

RÉSUMÉ

The hard tick Ixodes ricinus is an important disease vector whose salivary secretions mediate blood-feeding success on vertebrate hosts, including humans. Here we describe the expression profiles and downstream analysis of de novo-discovered microRNAs (miRNAs) expressed in I. ricinus salivary glands and saliva. Eleven tick-derived libraries were sequenced to produce 67,375,557 Illumina reads. De novo prediction yielded 67 bona fide miRNAs out of which 35 are currently not present in miRBase. We report for the first time the presence of microRNAs in tick saliva, obtaining furthermore molecular indicators that those might be of exosomal origin. Ten out of these microRNAs are at least 100 times more represented in saliva. For the four most expressed microRNAs from this subset, we analyzed their combinatorial effects upon their host transcriptome using a novel in silico target network approach. We show that only the inclusion of combinatorial effects reveals the functions in important pathways related to inflammation and pain sensing. A control set of highly abundant microRNAs in both saliva and salivary glands indicates no significant pathways and a far lower number of shared target genes. Therefore, the analysis of miRNAs from pure tick saliva strongly supports the hypothesis that tick saliva miRNAs can modulate vertebrate host homeostasis and represents the first direct evidence of tick miRNA-mediated regulation of vertebrate host gene expression at the tick-host interface. As such, the herein described miRNAs may support future drug discovery and development projects that will also experimentally question their predicted molecular targets in the vertebrate host.


Sujet(s)
Réseaux de régulation génique , Interactions hôte-parasite/génétique , Ixodes/génétique , microARN/analyse , Salive/composition chimique , Infestations par les tiques/parasitologie , Transcriptome , Animaux , Simulation numérique , Séquençage nucléotidique à haut débit/méthodes , microARN/génétique , Salive/métabolisme , Glandes salivaires/métabolisme , Infestations par les tiques/génétique , Vertébrés/parasitologie
7.
Sci Rep ; 5: 9103, 2015 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-25765539

RÉSUMÉ

Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes.


Sujet(s)
Muqueuse intestinale/métabolisme , Ixodes/génétique , Glandes salivaires/métabolisme , Transcription génétique , Animaux , Analyse de regroupements , Biologie informatique , Analyse de profil d'expression de gènes , Ixodes/classification , Annotation de séquence moléculaire , Spécificité d'organe/génétique , Phylogenèse , Polymorphisme génétique , Facteurs temps , Transcriptome
8.
Mol Cell Proteomics ; 13(10): 2725-35, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25048707

RÉSUMÉ

Although pathogens are usually transmitted within the first 24-48 h of attachment of the castor bean tick Ixodes ricinus, little is known about the tick's biological responses at these earliest phases of attachment. Tick midgut and salivary glands are the main tissues involved in tick blood feeding and pathogen transmission but the limited genomic information for I. ricinus delays the application of high-throughput methods to study their physiology. We took advantage of the latest advances in the fields of Next Generation RNA-Sequencing and Label-free Quantitative Proteomics to deliver an unprecedented, quantitative description of the gene expression dynamics in the midgut and salivary glands of this disease vector upon attachment to the vertebrate host. A total of 373 of 1510 identified proteins had higher expression in the salivary glands, but only 110 had correspondingly high transcript levels in the same tissue. Furthermore, there was midgut-specific expression of 217 genes at both the transcriptome and proteome level. Tissue-dependent transcript, but not protein, accumulation was revealed for 552 of 885 genes. Moreover, we discovered the enrichment of tick salivary glands in proteins involved in gene transcription and translation, which agrees with the secretory role of this tissue; this finding also agrees with our finding of lower tick t-RNA representation in the salivary glands when compared with the midgut. The midgut, in turn, is enriched in metabolic components and proteins that support its mechanical integrity in order to accommodate and metabolize the ingested blood. Beyond understanding the physiological events that support hematophagy by arthropod ectoparasites, we discovered more than 1500 proteins located at the interface between ticks, the vertebrate host, and the tick-borne pathogens. Thus, our work significantly improves the knowledge of the genetics underlying the transmission lifecycle of this tick species, which is an essential step for developing alternative methods to better control tick-borne diseases.


Sujet(s)
Analyse de profil d'expression de gènes/méthodes , Ixodes/croissance et développement , Protéomique/méthodes , Glandes salivaires/métabolisme , Animaux , Femelle , Tube digestif/métabolisme , Régulation de l'expression des gènes , Ixodes/anatomie et histologie , Ixodes/génétique , Étapes du cycle de vie , Mâle , Données de séquences moléculaires , Spécificité d'organe , ARN de transfert/métabolisme
9.
FASEB J ; 27(12): 4745-56, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-23964076

RÉSUMÉ

Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.


Sujet(s)
Ixodes/composition chimique , Glandes salivaires/métabolisme , Transcriptome , Animaux , Protéines d'arthropode/composition chimique , Protéines d'arthropode/génétique , Séquence nucléotidique , ADN complémentaire/composition chimique , ADN complémentaire/génétique , Évolution moléculaire , Séquençage nucléotidique à haut débit , Ixodes/génétique , Ixodes/métabolisme , Données de séquences moléculaires , Phylogenèse , Structure tertiaire des protéines , Analyse de séquence d'ADN
10.
Exp Appl Acarol ; 54(3): 277-84, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21431927

RÉSUMÉ

The tortoise tick Hyalomma aegyptium has a typical three-host life-cycle. Whereas its larvae and nymphs are less host-specific feeding on a variety of tetrapods, tortoises of the genus Testudo are principal hosts of adults. Ticks retained this trait also in our study under laboratory conditions, while adults were reluctant to feed on mammalian hosts. Combination of feeding larvae and nymphs on guinea pigs and feeding of adults on Testudo marginata tortoises provided the best results. Feeding period of females was on average 25 days (range 17-44), whereas males remain after female engorgement on tortoise host. Female pre-oviposition period was 14 days (3-31), followed by 24 days of oviposition (18-29). Pre-eclosion and eclosion, both together, takes 31 days (21-43). Larvae fed 5 days (3-9), then molted to nymphs after 17 days (12-23). Feeding period of nymphs lasted 7 days (5-10), engorged nymphs molted to adults after 24 days (19-26). Sex ratio of laboratory hatched H. aegyptium was nearly equal (1:1.09). The average weight of engorged female was 0.95 (0.72-1.12) g. The average number of laid eggs was 6,900 (6,524-7,532) per female, it was significantly correlated with weight of engorged female. Only 2.8% of engorged larvae and 1.8% of engorged nymphs remained un-molted and died. Despite the use of natural host species, feeding success of females reached only 45%. The whole life-cycle was completed within 147 days (98-215).


Sujet(s)
Ixodidae/physiologie , Tortues/parasitologie , Animaux , Comportement alimentaire , Femelle , Ixodidae/croissance et développement , Larve/croissance et développement , Larve/physiologie , Longévité , Mâle , Mue , Nymphe/croissance et développement , Nymphe/physiologie , Oviposition , Sexe-ratio
11.
Parasitol Res ; 107(6): 1515-20, 2010 Nov.
Article de Anglais | MEDLINE | ID: mdl-20827490

RÉSUMÉ

The experimental study investigated the ability of tortoise tick Hyalomma aegyptium to play a role in forming and maintaining natural foci of Q fever. We tested the competence of H. aegyptium larvae to acquire Coxiella burnetii infection from mammals, serve as a C. burnetii vector between mammalian hosts, and be a long-term carrier of C. burnetii, including interstadial transmission. H. aegyptium larvae were allowed to feed on guinea pigs experimentally infected with C. burnetii. Engorged larvae molted to nymphs, some of which were preserved in 96% ethanol and later examined by polymerase chain reaction (PCR) using C. burnetii-specific primers (CBCOS, CBCOE). Prevalence of C. burnetii among these nymphs was 5.6% (n=235). Remaining nymphs then fed on other, C. burnetii-negative guinea pigs; and according to results of both, micro-agglutination reaction, and ELISA, they successfully transmitted C. burnetii to those new hosts. Detached engorged nymphs molted to adults, which were kept alive long term and then placed in 96% ethanol 383 days post-infection. Thereafter, they were examined by PCR in the same manner as were the nymphs. Prevalence of C. burnetii among adult H. aegyptium was 28.9% (n=90). According to our results, tortoise-specific ticks have indisputable potential in the epidemiology of Q fever natural foci.


Sujet(s)
Coxiella burnetii/isolement et purification , Réservoirs de maladies/microbiologie , Ixodidae/microbiologie , Animaux , Cochons d'Inde , Larve/microbiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...