Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 14(1): 5004, 2023 08 17.
Article de Anglais | MEDLINE | ID: mdl-37591889

RÉSUMÉ

MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.


Sujet(s)
Récepteurs couplés aux protéines G , Transduction du signal , Humains , Cytoplasme , Cytosol , Ligands , Prurit
2.
Nat Commun ; 14(1): 2668, 2023 05 09.
Article de Anglais | MEDLINE | ID: mdl-37160891

RÉSUMÉ

Prostaglandin F2α (PGF2α), an endogenous arachidonic acid metabolite, regulates diverse physiological functions in many tissues and cell types through binding and activation of a G-protein-coupled receptor (GPCR), the PGF2α receptor (FP), which also is the primary therapeutic target for glaucoma and several other diseases. Here, we report cryo-electron microscopy (cryo-EM) structures of the human FP bound to endogenous ligand PGF2α and anti-glaucoma drugs LTPA and TFPA at global resolutions of 2.67 Å, 2.78 Å, and 3.14 Å. These structures reveal distinct features of FP within the lipid receptor family in terms of ligand binding selectivity, its receptor activation, and G protein coupling mechanisms, including activation in the absence of canonical PIF and ERY motifs and Gq coupling through direct interactions with receptor transmembrane helix 1 and intracellular loop 1. Together with mutagenesis and functional studies, our structures reveal mechanisms of ligand recognition, receptor activation, and G protein coupling by FP, which could facilitate rational design of FP-targeting drugs.


Sujet(s)
Protéines G , Prostaglandines , Humains , Cryomicroscopie électronique , Ligands , Acide arachidonique
3.
Nat Commun ; 14(1): 1268, 2023 03 07.
Article de Anglais | MEDLINE | ID: mdl-36882417

RÉSUMÉ

Endothelin system comprises three endogenous 21-amino-acid peptide ligands endothelin-1, -2, and -3 (ET-1/2/3), and two G protein-coupled receptor (GPCR) subtypes-endothelin receptor A (ETAR) and B (ETBR). Since ET-1, the first endothelin, was identified in 1988 as one of the most potent endothelial cell-derived vasoconstrictor peptides with long-lasting actions, the endothelin system has attracted extensive attention due to its critical role in vasoregulation and close relevance in cardiovascular-related diseases. Here we present three cryo-electron microscopy structures of ETAR and ETBR bound to ET-1 and ETBR bound to the selective peptide IRL1620. These structures reveal a highly conserved recognition mode of ET-1 and characterize the ligand selectivity by ETRs. They also present several conformation features of the active ETRs, thus revealing a specific activation mechanism. Together, these findings deepen our understanding of endothelin system regulation and offer an opportunity to design selective drugs targeting specific ETR subtypes.


Sujet(s)
Maladies cardiovasculaires , Endothéline-1 , Humains , Cryomicroscopie électronique , Récepteur de type A de l'endothéline , Acides aminés , Peptides
4.
Cell Res ; 33(1): 46-54, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36588120

RÉSUMÉ

G protein-coupled receptors (GPCRs) are regulated by various downstream proteins, of which the melanocortin receptor accessory protein 1 (MRAP1) is closely involved in the regulation of melanocortin receptor 2 (MC2R). Assisted by MRAP1, MC2R responds to adrenocorticotropic hormone (ACTH) and stimulates glucocorticoid biogenesis and cortisol secretion. MC2R activation plays an essential role in the hypothalamic-pituitary-adrenal (HPA) axis that regulates stress response, while its dysfunction causes glucocorticoid insufficiency- or cortisol excess-associated disorders. Here, we present a cryo-electron microscopy (cryo-EM) structure of the ACTH-bound MC2R-Gs-MRAP1 complex. Our structure, together with mutagenesis analysis, reveals a unique sharp kink at the extracellular region of MRAP1 and the 'seat-belt' effect of MRAP1 on stabilizing ACTH binding and MC2R activation. Mechanisms of ACTH recognition by MC2R and receptor activation are also demonstrated. These findings deepen our understanding of GPCR regulation by accessory proteins and provide valuable insights into the ab initio design of therapeutic agents targeting MC2R.


Sujet(s)
Mélanocortines , Récepteur de la mélanocortine de type 2 , Humains , Récepteur de la mélanocortine de type 2/métabolisme , Glucocorticoïdes , Hydrocortisone , Cryomicroscopie électronique , Hormone corticotrope/métabolisme
5.
Nat Commun ; 14(1): 492, 2023 01 30.
Article de Anglais | MEDLINE | ID: mdl-36717591

RÉSUMÉ

Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.


Sujet(s)
Relaxine , Humains , Relaxine/métabolisme , Ligands , Cryomicroscopie électronique , Insuline/métabolisme , Récepteurs couplés aux protéines G/composition chimique , Transduction du signal , Récepteurs peptidiques/génétique , Récepteurs peptidiques/composition chimique
6.
Comput Struct Biotechnol J ; 20: 6503-6511, 2022.
Article de Anglais | MEDLINE | ID: mdl-36467583

RÉSUMÉ

Luteinizing hormone-choriogonadotropin receptor (LHCGR), a class A G protein-coupled receptor (GPCR), plays a pivotal role in the maturation of reproductive organs and embryonic development. Compared with other GPCRs, the subfamily of LHCGR has a large extracellular domain (ECD) to interact with glycoprotein hormones. A unique hinge region connects the ECD and transmembrane domain (TMD) to transfer the activation signal. However, the signal transmission mechanism remains largely unknown. Here, both molecular dynamics simulation and evolutional analysis were applied to explore the effect of the hinge region on signal transmission. The glycoprotein hormone determined specific hinge region conformations, including the position of a long hinge loop and the ECD-TMD interface. With the hormone, the hinge region showed a characteristic rotation and displayed an active-like conformational landscape of the ECD-TMD interface with an extended TMD. The active-like hinge region conformation transduces the hormone binding signal downwards from ECD to TMD. The relationship between the hinge region and the intracelluar G protein-binding pocket was also inferred. The hinge region-mediated signal transmission mechanism offers a deeper understanding of LHCGR and provides insights into the elucidation of GPCR activation.

7.
Cell Discov ; 8(1): 135, 2022 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-36543774

RÉSUMÉ

Endogenous ions play important roles in the function and pharmacology of G protein-coupled receptors (GPCRs) with limited atomic evidence. In addition, compared with G protein subtypes Gs, Gi/o, and Gq/11, insufficient structural evidence is accessible to understand the coupling mechanism of G12/13 protein by GPCRs. Orphan receptor GPR35, which is predominantly expressed in the gastrointestinal tract and is closely related to inflammatory bowel diseases (IBDs), stands out as a prototypical receptor for investigating ionic modulation and G13 coupling. Here we report a cryo-electron microscopy structure of G13-coupled GPR35 bound to an anti-allergic drug, lodoxamide. This structure reveals a novel divalent cation coordination site and a unique ionic regulatory mode of GPR35 and also presents a highly positively charged binding pocket and the complementary electrostatic ligand recognition mode, which explain the promiscuity of acidic ligand binding by GPR35. Structural comparison of the GPR35-G13 complex with other G protein subtypes-coupled GPCRs reveals a notable movement of the C-terminus of α5 helix of the Gα13 subunit towards the receptor core and the least outward displacement of the cytoplasmic end of GPR35 TM6. A featured 'methionine pocket' contributes to the G13 coupling by GPR35. Together, our findings provide a structural basis for divalent cation modulation, ligand recognition, and subsequent G13 protein coupling of GPR35 and offer a new opportunity for designing GPR35-targeted drugs for the treatment of IBDs.

9.
Nat Commun ; 13(1): 2045, 2022 04 19.
Article de Anglais | MEDLINE | ID: mdl-35440625

RÉSUMÉ

Neuromedin U receptors (NMURs), including NMUR1 and NMUR2, are a group of Gq/11-coupled G protein-coupled receptors (GPCRs). NMUR1 and NMUR2 play distinct, pleiotropic physiological functions in peripheral tissues and in the central nervous system (CNS), respectively, according to their distinct tissue distributions. These receptors are stimulated by two endogenous neuropeptides, neuromedin U and S (NMU and NMS) with similar binding affinities. NMURs have gathered attention as potential drug targets for obesity and inflammatory disorders. Specifically, selective agonists for NMUR2 in peripheral tissue show promising long-term anti-obesity effects with fewer CNS-related side effects. However, the mechanisms of peptide binding specificity and receptor activation remain elusive. Here, we report four cryo-electron microscopy structures of Gq chimera-coupled NMUR1 and NMUR2 in complexes with NMU and NMS. These structures reveal the conserved overall peptide-binding mode and the mechanism of peptide selectivity for specific NMURs, as well as the common activation mechanism of the NMUR subfamily. Together, these findings provide insights into the molecular basis of the peptide recognition and offer an opportunity for the design of the selective drugs targeting NMURs.


Sujet(s)
Obésité , Récepteurs aux neuromédiateurs , Système nerveux central/métabolisme , Cryomicroscopie électronique , Humains , Obésité/traitement médicamenteux , Récepteurs aux neuromédiateurs/métabolisme
10.
Nat Commun ; 13(1): 1156, 2022 03 03.
Article de Anglais | MEDLINE | ID: mdl-35241677

RÉSUMÉ

Leukotriene B4 receptor 1 (BLT1) plays crucial roles in the acute inflammatory responses and is a valuable target for anti-inflammation treatment, however, the mechanism by which leukotriene B4 (LTB4) activates receptor remains unclear. Here, we report the cryo-electron microscopy (cryo-EM) structure of the LTB4 -bound human BLT1 in complex with a Gi protein in an active conformation at resolution of 2.91 Å. In combination of molecule dynamics (MD) simulation, docking and site-directed mutagenesis, our structure reveals that a hydrogen-bond network of water molecules and key polar residues is the key molecular determinant for LTB4 binding. We also find that the displacement of residues M1013.36 and I2717.39 to the center of receptor, which unlock the ion lock of the lower part of pocket, is the key mechanism of receptor activation. In addition, we reveal a binding site of phosphatidylinositol (PI) and discover that the widely open ligand binding pocket may contribute the lack of specificity and efficacy for current BLT1-targeting drug design. Taken together, our structural analysis provides a scaffold for understanding BLT1 activation and a rational basis for designing anti-leukotriene drugs.


Sujet(s)
Leucotriène B4 , Récepteurs aux leucotriènes B4 , Cryomicroscopie électronique , Protéines G/composition chimique , Protéines G/métabolisme , Humains , Inflammation , Leucotriène B4/métabolisme , Récepteurs aux leucotriènes B4/composition chimique , Récepteurs aux leucotriènes B4/métabolisme , Transduction du signal , Relation structure-activité
11.
Nat Commun ; 13(1): 1364, 2022 03 15.
Article de Anglais | MEDLINE | ID: mdl-35292680

RÉSUMÉ

Peptide hormones and neuropeptides are complex signaling molecules that predominately function through G protein-coupled receptors (GPCRs). Two unanswered questions remaining in the field of peptide-GPCR signaling systems pertain to the basis for the diverse binding modes of peptide ligands and the specificity of G protein coupling. Here, we report the structures of a neuropeptide, galanin, bound to its receptors, GAL1R and GAL2R, in complex with their primary G protein subtypes Gi and Gq, respectively. The structures reveal a unique binding pose of galanin, which almost 'lays flat' on the top of the receptor transmembrane domain pocket in an α-helical conformation, and acts as an 'allosteric-like' agonist via a distinct signal transduction cascade. The structures also uncover the important features of intracellular loop 2 (ICL2) that mediate specific interactions with Gq, thus determining the selective coupling of Gq to GAL2R. ICL2 replacement in Gi-coupled GAL1R, µOR, 5-HT1AR, and Gs-coupled ß2AR and D1R with that of GAL2R promotes Gq coupling of these receptors, highlighting the dominant roles of ICL2 in Gq selectivity. Together our results provide insights into peptide ligand recognition and allosteric activation of galanin receptors and uncover a general structural element for Gq coupling selectivity.


Sujet(s)
Protéines G , Galanine , Protéines G/métabolisme , Galanine/métabolisme , Liaison aux protéines , Récepteurs couplés aux protéines G/métabolisme , Récepteurs à la galanine/métabolisme , Transduction du signal
12.
Nat Commun ; 12(1): 3763, 2021 06 18.
Article de Anglais | MEDLINE | ID: mdl-34145245

RÉSUMÉ

The glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive. Here, we report three cryo-electron microscopy structures of GLP-1R bound to (i) compound 2 (an ago-allosteric modulator); (ii) compound 2 and GLP-1; and (iii) compound 2 and LY3502970 (a small molecule agonist), all in complex with heterotrimeric Gs. The structures reveal that compound 2 is covalently bonded to C347 at the cytoplasmic end of TM6 and triggers its outward movement in cooperation with the ECD whose N terminus penetrates into the GLP-1 binding site. This allows compound 2 to execute positive allosteric modulation through enhancement of both agonist binding and G protein coupling. Our findings offer insights into the structural basis of ago-allosterism at GLP-1R and may aid the design of better therapeutics.


Sujet(s)
Glucagon-like peptide 1/analogues et dérivés , Glucagon-like peptide 1/pharmacologie , Récepteur du peptide-1 similaire au glucagon/agonistes , Animaux , Sites de fixation/physiologie , Cellules CHO , Lignée cellulaire , Cricetulus , Cryomicroscopie électronique , Diabète de type 2/traitement médicamenteux , Activation enzymatique/effets des médicaments et des substances chimiques , Glucagon-like peptide 1/métabolisme , Récepteur du peptide-1 similaire au glucagon/génétique , Récepteur du peptide-1 similaire au glucagon/métabolisme , Peptides glucagon-like/pharmacologie , Cellules HEK293 , Humains , Simulation de dynamique moléculaire , Conformation des protéines , Cellules Sf9 , Spodoptera
14.
Nat Struct Mol Biol ; 28(3): 319-325, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33674802

RÉSUMÉ

The COVID-19 pandemic caused by nonstop infections of SARS-CoV-2 has continued to ravage many countries worldwide. Here we report that suramin, a 100-year-old drug, is a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and acts by blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for treatment of COVID-19. The 2.6 Å cryo-electron microscopy structure of the viral RdRp bound to suramin reveals two binding sites. One site directly blocks the binding of the RNA template strand and the other site clashes with the RNA primer strand near the RdRp catalytic site, thus inhibiting RdRp activity. Suramin blocks viral replication in Vero E6 cells, although the reasons underlying this effect are likely various. Our results provide a structural mechanism for a nonnucleotide inhibitor of the SARS-CoV-2 RdRp.


Sujet(s)
Antiviraux/pharmacologie , ARN polymérase ARN-dépendante de coronavirus/antagonistes et inhibiteurs , ARN polymérase ARN-dépendante de coronavirus/composition chimique , Antienzymes/pharmacologie , Suramine/pharmacologie , Animaux , Antiviraux/composition chimique , Antiviraux/métabolisme , Sites de fixation , Domaine catalytique , Chlorocebus aethiops , ARN polymérase ARN-dépendante de coronavirus/métabolisme , Cryomicroscopie électronique , Antienzymes/composition chimique , Antienzymes/métabolisme , Conformation des protéines , ARN viral/composition chimique , ARN viral/métabolisme , SARS-CoV-2/effets des médicaments et des substances chimiques , Suramine/composition chimique , Suramine/métabolisme , Cellules Vero , Réplication virale/effets des médicaments et des substances chimiques
15.
Nat Commun ; 11(1): 5205, 2020 10 15.
Article de Anglais | MEDLINE | ID: mdl-33060564

RÉSUMÉ

Growth hormone-releasing hormone (GHRH) regulates the secretion of growth hormone that virtually controls metabolism and growth of every tissue through its binding to the cognate receptor (GHRHR). Malfunction in GHRHR signaling is associated with abnormal growth, making GHRHR an attractive therapeutic target against dwarfism (e.g., isolated growth hormone deficiency, IGHD), gigantism, lipodystrophy and certain cancers. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein at 2.6 Å. This high-resolution structure reveals a characteristic hormone recognition pattern of GHRH by GHRHR, where the α-helical GHRH forms an extensive and continuous network of interactions involving all the extracellular loops (ECLs), all the transmembrane (TM) helices except TM4, and the extracellular domain (ECD) of GHRHR, especially the N-terminus of GHRH that engages a broad set of specific interactions with the receptor. Mutagenesis and molecular dynamics (MD) simulations uncover detailed mechanisms by which IGHD-causing mutations lead to the impairment of GHRHR function. Our findings provide insights into the molecular basis of peptide recognition and receptor activation, thereby facilitating the development of structure-based drug discovery and precision medicine.


Sujet(s)
Hormone de libération de l'hormone de croissance/composition chimique , Hormone de libération de l'hormone de croissance/métabolisme , Récepteur aux neuropeptides/composition chimique , Récepteur aux neuropeptides/métabolisme , Récepteur hormones hypothalamiques hypophysotropes régulatrices/composition chimique , Récepteur hormones hypothalamiques hypophysotropes régulatrices/métabolisme , Sites de fixation , Cryomicroscopie électronique , Nanisme hypophysaire/génétique , Protéines G , Hormone de libération de l'hormone de croissance/déficit , Humains , Simulation de dynamique moléculaire , Mutagenèse , Mutation , Conformation des protéines , Structure en hélice alpha , Récepteur aux neuropeptides/génétique , Récepteur hormones hypothalamiques hypophysotropes régulatrices/génétique , Transduction du signal
16.
Nat Commun ; 11(1): 1598, 2020 03 27.
Article de Anglais | MEDLINE | ID: mdl-32221310

RÉSUMÉ

We propose the concept of universal fiducials based on a set of pre-made semi-synthetic antibodies (sABs) generated by customized phage display selections against the fusion protein BRIL, an engineered variant of apocytochrome b562a. These sABs can bind to BRIL fused either into the loops or termini of different GPCRs, ion channels, receptors and transporters without disrupting their structure. A crystal structure of BRIL in complex with an affinity-matured sAB (BAG2) that bound to all systems tested delineates the footprint of interaction. Negative stain and cryoEM data of several examples of BRIL-membrane protein chimera highlight the effectiveness of the sABs as universal fiducial marks. Taken together with a cryoEM structure of sAB bound human nicotinic acetylcholine receptor, this work demonstrates that these anti-BRIL sABs can greatly enhance the particle properties leading to improved cryoEM outcomes, especially for challenging membrane proteins.


Sujet(s)
Anticorps/pharmacologie , Cryomicroscopie électronique/méthodes , Protéines membranaires/composition chimique , Anticorps/composition chimique , Membrane cellulaire/métabolisme , Techniques d'exposition à la surface cellulaire , Cristallographie aux rayons X , Humains , Protéines membranaires/effets des médicaments et des substances chimiques , Protéines membranaires/métabolisme , Modèles moléculaires , Polymères , Propylamines , Liaison aux protéines , Conformation des protéines
17.
Nat Commun ; 11(1): 885, 2020 02 14.
Article de Anglais | MEDLINE | ID: mdl-32060286

RÉSUMÉ

Formylpeptide receptors (FPRs) as G protein-coupled receptors (GPCRs) can recognize formylpeptides derived from pathogens or host cells to function in host defense and cell clearance. In addition, FPRs, especially FPR2, can also recognize other ligands with a large chemical diversity generated at different stages of inflammation to either promote or resolve inflammation in order to maintain a balanced inflammatory response. The mechanism underlying promiscuous ligand recognition and activation of FPRs is not clear. Here we report a cryo-EM structure of FPR2-Gi signaling complex with a peptide agonist. The structure reveals a widely open extracellular region with an amphiphilic environment for ligand binding. Together with computational docking and simulation, the structure suggests a molecular basis for the recognition of formylpeptides and a potential mechanism of receptor activation, and reveals conserved and divergent features in Gi coupling. Our results provide a basis for understanding the molecular mechanism of the functional promiscuity of FPRs.


Sujet(s)
Récepteurs aux peptides formylés/composition chimique , Récepteurs aux peptides formylés/métabolisme , Récepteurs de la lipoxine/composition chimique , Récepteurs de la lipoxine/métabolisme , Animaux , Sites de fixation , Cryomicroscopie électronique , Humains , Ligands , Simulation de docking moléculaire , Mutation , Peptides/composition chimique , Peptides/métabolisme , Conformation des protéines , Rats , Récepteurs aux peptides formylés/génétique , Récepteurs de la lipoxine/génétique , Transduction du signal
18.
Cell Res ; 29(12): 971-983, 2019 Dec.
Article de Anglais | MEDLINE | ID: mdl-31776446

RÉSUMÉ

Arrestins comprise a family of signal regulators of G-protein-coupled receptors (GPCRs), which include arrestins 1 to 4. While arrestins 1 and 4 are visual arrestins dedicated to rhodopsin, arrestins 2 and 3 (Arr2 and Arr3) are ß-arrestins known to regulate many nonvisual GPCRs. The dynamic and promiscuous coupling of Arr2 to nonvisual GPCRs has posed technical challenges to tackle the basis of arrestin binding to GPCRs. Here we report the structure of Arr2 in complex with neurotensin receptor 1 (NTSR1), which reveals an overall assembly that is strikingly different from the visual arrestin-rhodopsin complex by a 90° rotation of Arr2 relative to the receptor. In this new configuration, intracellular loop 3 (ICL3) and transmembrane helix 6 (TM6) of the receptor are oriented toward the N-terminal domain of the arrestin, making it possible for GPCRs that lack the C-terminal tail to couple Arr2 through their ICL3. Molecular dynamics simulation and crosslinking data further support the assembly of the Arr2‒NTSR1 complex. Sequence analysis and homology modeling suggest that the Arr2‒NTSR1 complex structure may provide an alternative template for modeling arrestin-GPCR interactions.


Sujet(s)
Récepteur neurotensine , bêta-Arrestine 2 , Humains , Simulation de docking moléculaire/méthodes , Liaison aux protéines , Conformation des protéines , Récepteur neurotensine/composition chimique , Récepteur neurotensine/métabolisme , bêta-Arrestine 2/composition chimique , bêta-Arrestine 2/métabolisme
19.
Protein Sci ; 28(3): 487-501, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30311978

RÉSUMÉ

G protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one-third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high-resolution structures of GPCRs in complex with their signaling transducers, including G-protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling-biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high-resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.


Sujet(s)
Récepteurs couplés aux protéines G/métabolisme , Transduction du signal , Séquence d'acides aminés , Animaux , Humains , Modèles moléculaires , Conformation des protéines , Cartes d'interactions protéiques , Récepteurs couplés aux protéines G/composition chimique , Alignement de séquences
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...