Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 57
Filtrer
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39065807

RÉSUMÉ

The need for new drugs to treat human infections is a global health concern. Diseases like tuberculosis, trypanosomiasis, amoebiasis, and AIDS remain significant problems, especially in developing countries like Mexico. Despite existing treatments, issues such as resistance and adverse effects drive the search for new alternatives. Herein, we introduce the NUATEI research consortium, made up of experts from the Institute of Biomedical Research at UNAM, who identify and obtain natural and synthetic compounds and test their effects against human pathogens using in vitro and in vivo models. The consortium has evaluated hundreds of natural extracts and compounds against the pathogens causing tuberculosis, trypanosomiasis, amoebiasis, and AIDS, rendering promising results, including a patent with potential for preclinical studies. This paper presents the rationale behind the formation of this consortium, as well as its objectives and strategies, emphasizing the importance of natural and synthetic products as sources of antimicrobial compounds and the relevance of the diseases studied. Finally, we briefly describe the methods of the evaluation of the compounds in each biological model and the main achievements. The potential of the consortium to screen numerous compounds and identify new therapeutic agents is highlighted, demonstrating its significant contribution to addressing these infectious diseases.

2.
Curr Microbiol ; 81(7): 197, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38816607

RÉSUMÉ

Identifying and evaluating potential vaccine candidates has become one of the main objectives to combat tuberculosis. Among them, mannosylated Apa antigen from Mycobacterium tuberculosis and the non-mannosylated protein expressed in Escherichia coli, have been studied. Although both proteins can induce a protective response in mice, it has been considered that native protein can be dispensed. In this work, we study the protective response induced by Apa expressed in E. coli and in Streptomyces lividans. The latter, like native is secreted as a double band of 45/47 kDa, however, only its 47 kDa band is mannosylated. Both antigens and BCG were intranasal administrated in mice, and animals were then challenged by aerosol with M. tuberculosis H37Rv. The results showed that both, Apa from S. lividans and E. coli conferred statistically significantly protection to animals compared to controls. The cytokine immune response was studied by an immunoassay after animals' immunization, revealing that Apa from S. lividans induced a statistically significant proliferation of T cell, as well as the expression of IFN-γ, IL-1ß, IL-17 and IL-10. In contrast, non-proliferation was obtained with non-mannosylated protein, but induction of IL-12 and IL-17 was observed. Together, these results demonstrate that both proteins were able to modulate a specific immune response against M. tuberculosis, that could be driven by different mechanisms possibly associated with the presence or not of mannosylation. Furthermore, stimulation of cells from BCG-vaccinated animals with the proteins could be an important tool, to help define the use of a given subunit-vaccine after BCG vaccination.


Sujet(s)
Administration par voie nasale , Cytokines , Mycobacterium tuberculosis , Streptomyces lividans , Tuberculose , Animaux , Mycobacterium tuberculosis/immunologie , Mycobacterium tuberculosis/génétique , Souris , Cytokines/métabolisme , Tuberculose/prévention et contrôle , Tuberculose/immunologie , Streptomyces lividans/génétique , Streptomyces lividans/immunologie , Aérosols , Protéines recombinantes/immunologie , Protéines recombinantes/génétique , Protéines recombinantes/administration et posologie , Protéines bactériennes/génétique , Protéines bactériennes/immunologie , Protéines bactériennes/administration et posologie , Vaccins antituberculeux/immunologie , Vaccins antituberculeux/administration et posologie , Vaccins antituberculeux/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Femelle , Souris de lignée BALB C , Antigènes bactériens/immunologie , Antigènes bactériens/génétique , Antigènes bactériens/administration et posologie
3.
Arch Microbiol ; 206(6): 285, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38816572

RÉSUMÉ

Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.


Sujet(s)
Brucella abortus , Régulation de l'expression des gènes bactériens , Brucella abortus/génétique , Brucella abortus/métabolisme , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , ARN bactérien/génétique , ARN bactérien/métabolisme , Transcription génétique , ARN antisens/génétique , ARN antisens/métabolisme , Stress physiologique , Animaux , Macrophages/microbiologie
4.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38399455

RÉSUMÉ

SARS-CoV-2 Main Protease (Mpro) is an enzyme that cleaves viral polyproteins translated from the viral genome, which is critical for viral replication. Mpro is a target for anti-SARS-CoV-2 drug development. Herein, we performed a large-scale virtual screening by comparing multiple structural descriptors of reference molecules with reported anti-coronavirus activity against a library with >17 million compounds. Further filtering, performed by applying two machine learning algorithms, identified eighteen computational hits as anti-SARS-CoV-2 compounds with high structural diversity and drug-like properties. The activities of twelve compounds on Mpro's enzymatic activity were evaluated by fluorescence resonance energy transfer (FRET) assays. Compound 13 (ZINC13878776) significantly inhibited SARS-CoV-2 Mpro activity and was employed as a reference for an experimentally hit expansion. The structural analogues 13a (ZINC4248385), 13b (ZNC13523222), and 13c (ZINC4248365) were tested as Mpro inhibitors, reducing the enzymatic activity of recombinant Mpro with potency as follows: 13c > 13 > 13b > 13a. Then, their anti-SARS-CoV-2 activities were evaluated in plaque reduction assays using Vero CCL81 cells. Subtoxic concentrations of compounds 13a, 13c, and 13b displayed in vitro antiviral activity with IC50 in the mid micromolar range. Compounds 13a-c could become lead compounds for the development of new Mpro inhibitors with improved activity against anti-SARS-CoV-2.

5.
ACS Omega ; 8(43): 40665-40676, 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37929145

RÉSUMÉ

The aim of this study was to evaluate the potential antibiofilm activity of Rhynchosia precatoria (R. precatoria) compounds over Mycobacterium bovis BCG (M. bovis BCG) as a model for Mycobacterium tuberculosis (Mtb). We evaluated the antibiofilm activity as the ability to both inhibit biofilm formation and disrupt preformed biofilms (bactericidal) of R. precatoria compounds, which have been previously described as being antimycobacterials against Mtb. M. bovis BCG developed air-liquid interface biofilms with surface attachment ability and drug tolerance. Of the R. precatoria extracts and compounds that were tested, precatorin A (PreA) displayed the best biofilm inhibitory activity, as evaluated by biofilm biomass quantification, viable cell count, and confocal and atomic force microscopy procedures. Furthermore, its combination with isoniazid at subinhibitory concentrations inhibited M. bovis BCG biofilm formation. Nonetheless, neither PreA nor the extract showed bactericidal effects. PreA is the R. precatoria compound responsible for biofilm inhibitory activity against M. bovis BCG.

6.
Biomolecules ; 13(11)2023 10 27.
Article de Anglais | MEDLINE | ID: mdl-38002267

RÉSUMÉ

COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.


Sujet(s)
COVID-19 , Encéphalite , Maladies du système nerveux , Neuroprotecteurs , Humains , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , SARS-CoV-2
7.
J Ethnopharmacol ; 301: 115778, 2023 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-36202165

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Several medicinal plants, including the endemic herb Cirsum ehrenbergii (Asteraceae), have been documented in manuscripts, medical and botanical books written in Mexico since the XVI century until the present. This unique circumstance is a real window in the time that allows to investigate historical and contemporary ethnopharmacological knowledge. AIM OF THE STUDY: To examine the persistence, disappearance, and transformation of ethnomedicinal knowledge of C. ehrenbergii along time. Also, to investigate the chemistry and pharmacology of this species in relation to its historical and present day main ethnomedical applications related to Central Nervous System and inflammation. MATERIALS AND METHODS: A thorough review was performed of written sources of medicinal plants from XVI and onwards. For the pharmacological studies, the organic extracts were tested in mice models to assess its antidepressant and anti-inflammatory properties. The active extracts were studied chemically. The isolated compounds were identified by 1H, 13C NMR, or characterized by GC-MS. RESULTS: Cirsum ehrenbergii was illustrated for the first time (1552) in the Libellus de Medicinalibus Indorum Herbis (Booklet of Medicinal Plants of the Indians) and named in the Nahuatl native language as huitzquilitl (edible thistle). It was there recommended as nigris sanguinis remedium (remedy for black blood), and for the treatment of illnesses with an inflammatory component. Nigris sanguinis was well known in the European medicine of that time and currently it has been interpreted as "depression". At the present time, peasants and native population in Mexico mainly name C. ehrenbergii in Spanish as cardo Santo (holy thistle). Its original Nahuatl name has been almost forgotten. However, these communities use this species, among other maladies, to heal "nervios" (anxiety and/or depression) and for anti-inflammatory purposes. These ailments and treatments resemble those recorded in the Libellus and in several medicinal plant books along centuries. The ethanol extract of C. ehrenbergii roots showed antidepressant-like activity in mice administered at 300 mg/kg, as indicated by the forced swim test (FST). The glycosylated flavonoid linarin was identified as antidepressant principle and was active at the doses of 30 and 60 mg/kg in the FST. Regarding to anti-inflammatory activity, the most active was the methylene chloride extract of the aerial parts, which contains taraxasterol, pseudotaraxasterol, ß-sitosterol and stigmasterol. CONCLUSIONS: Cirsium ehrenbergii extracts possess antidepressant-like (roots, EtOH) and anti-inflammatory (aerial parts, CH2Cl2) properties, containing active compounds. Our results sustain historical and present day ethnomedical applications of this species documented along five centuries.


Sujet(s)
Asteraceae , Cirsium , Plantes médicinales , Souris , Animaux , Centaurea benedicta , Mexique , Médecine traditionnelle/histoire , Ethnopharmacologie , Extraits de plantes/pharmacologie , Extraits de plantes/usage thérapeutique , Phytothérapie
8.
Planta Med ; 89(2): 148-157, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-35338475

RÉSUMÉ

Plants of Tabernaemontana species have several pharmacological activities including antimicrobial effects. Amoebiasis continues to be a public health problem, with increasing evidence of resistance to metronidazole. In this study, we assessed the effect of the alkaloid fraction of T. arborea root bark and the alkaloids ibogaine and voacangine on the viability and infectivity of Entamoeba histolytica trophozoites. Cultures were exposed to 0.1 - 10 µg/mL for 24, 48 and 72 h, and viability was then determined using a tetrazolium dye reduction assay and type of cellular death analyzed by flow cytometry. Results showed that the alkaloid fraction, but mainly ibogaine and voacangine alkaloids, exhibited potent dose-dependent anti-amoebic activity at 24 h post-exposure (IC50 4.5 and 8.1 µM, respectively), comparable to metronidazole (IC50 6.8 µM). However, the effect decreased after 48 and 72 h of exposure to concentrations below 10 µg/mL, suggesting that the alkaloids probably were catabolized to less active derivatives by the trophozoites. The treatment of trophozoites with the IC50 s for 24 h induced significant morphological changes in the trophozoites, slight increase in granularity, and death by apoptonecrosis. The capacity of T. arborea alkaloids to inhibit the development of amoebic liver abscesses in hamsters was evaluated. Results showed that even when the treatments reduced the number of amoebic trophozoites in tissue sections of livers, they were unable to limit the formation of abscesses, suggesting their rapid processing to inactive metabolites. This work leaves open the possibility of using Tabernaemontana alkaloids as a new alternative for amoebiasis control.


Sujet(s)
Alcaloïdes , Amibiase , Ibogaïne , Tabernaemontana , Ibogaïne/métabolisme , Ibogaïne/pharmacologie , Métronidazole/pharmacologie , Métronidazole/métabolisme , Écorce , Alcaloïdes/pharmacologie , Alcaloïdes/métabolisme
9.
Pathogens ; 11(12)2022 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-36558852

RÉSUMÉ

N-acetylneuraminic acid linked to galactose by α2,6 and α2,3 linkages (Siaα2,6 and Siaα2,3) is expressed on glycoconjugates of animal tissues, where it performs multiple biological functions. In addition, these types of sialic acid residues are the main targets for the binding and entry of influenza viruses. Here we used fluorochrome-conjugated Sambuccus nigra, Maackia amurensis, and peanut lectins for the simultaneous detection of Siaα2,3 and Siaα2,6 and galactosyl residues by two-color flow cytometry on A549 cells, a human pneumocyte cell line used for in vitro studies of the infection by influenza viruses, as well as on Vero and MDCK cell lines. The dexamethasone (DEX) glucocorticoid (GC), a widely used anti-inflammatory compound, completely abrogated the expression of Siaα2,3 in A549 cells and decreased its expression in Vero and MDCK cells; in contrast, the expression of Siaα2,6 was increased in the three cell lines. These observations indicate that DEX can be used for the study of the mechanism of sialylation of cell membrane molecules. Importantly, DEX may change the tropism of avian and human/pig influenza viruses and other infectious agents to animal and human epithelial cells.

10.
Exp Lung Res ; 48(9-10): 251-265, 2022.
Article de Anglais | MEDLINE | ID: mdl-36102603

RÉSUMÉ

Purpose of the study: During the early and progressive (late) stages of murine experimental pulmonary tuberculosis, the differential activation of macrophages contributes to disease development by controlling bacterial growth and immune regulation. Mycobacterial proteins P27 and PE_PGRS33 can target the mitochondria of macrophages. This study aims to evaluate the effect of both proteins on macrophage activation during mycobacterial infection. Materials and methods: We assess both proteins for mitochondrial oxygen consumption, and morphological changes, as well as bactericide activity, production of metabolites, cytokines, and activation markers in infected MQs. The cell line MH-S was used for all the experiments. Results: We show that P27 and PE_PGRS33 proteins modified mitochondrial dynamics, oxygen consumption, bacilli growth, cytokine production, and some genes that contribute to macrophage alternative activation and mycobacterial intracellular survival. Conclusions: Our findings showed that these bacterial proteins partially contribute to promoting M2 differentiation by altering mitochondrial metabolic activity.


Sujet(s)
Mycobacterium tuberculosis , Tuberculose , Souris , Animaux , Activation des macrophages , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/métabolisme , Macrophages alvéolaires/métabolisme , Mitochondries
11.
Infect Drug Resist ; 14: 4323-4332, 2021.
Article de Anglais | MEDLINE | ID: mdl-34707377

RÉSUMÉ

BACKGROUND: Tuberculosis is an infectious disease caused by the bacillus Mycobacterium tuberculosis. Compounds including a sulfur-containing scaffold have been shown to be key scaffolds in various antituberculosis agents. Interestingly, the 3-hydroxy-3-phenyl-prop-2-enedithioic acids 11a-j have, to the best of our knowledge, not been previously described as antituberculosis agents. PURPOSE: In the present study, we investigated the role of substituents attached to the phenyl ring of a 3-hydroxy-3-phenyl-prop-2-enedithioic acid scaffold (compounds 11a-j) in inhibiting the growth of M. tuberculosis strain H37Rv. METHODS: (Z)-3-hydroxy-3-(4-R-phenyl)-prop-2-enedithioic acids 11b-j, with R groups including various electron-donating or electron-withdrawing groups, were designed by structurally modifying the lead compound 11a. The syntheses of 11a-j involved each one-step procedure starting from the corresponding substituted acetophenone. Compounds 11a-j were tested against M. tuberculosis strain H37Rv to evaluate their bacterial growth inhibitory activities. ADMET profiles were predicted by employing three different methods. In addition, molecular docking studies were carried out, based on the molecular similarities of the synthesized compounds with ethionamide (5), on the active site of the M. tuberculosis H37Rv (3R)-hydroxyacyl-ACP (HadAB) dehydratase heterodimer. RESULTS: The antituberculosis activities of compounds 11a-j could be explained in terms of the presence of electron-donating or electron-withdrawing substituents on the aromatic ring of the substituted 3-hydroxy-3-phenyl)-prop-2-enedithioic acid core. The activity and selectivity index (SI) value of (Z)-3-hydroxy-3-(4-nitrophenyl)-prop-2-enedithioic acid 11e suggested that this compound could be used for the design of novel antituberculosis agents. Most of the synthesized molecules showed an acceptable ADME profile and a low probability of being toxic. Docking studies of 11d and 11e showed them forming hydrogen bonds with the ACys61 residue of the HadAB enzyme. CONCLUSION: Our results suggested that the antituberculosis compound 11e could be used for the design of novel antituberculosis agents.

12.
Pathogens ; 10(9)2021 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-34578171

RÉSUMÉ

In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host-pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.

13.
Org Biomol Chem ; 19(38): 8272-8280, 2021 10 06.
Article de Anglais | MEDLINE | ID: mdl-34518856

RÉSUMÉ

A high-yielding total synthesis of the indole alkaloid prenostodione was completed in 4 steps and 44% overall yield from 1H-indole-3-carboxylic acid. The expedient syntheses of prenostodiones containing distinct substituents at the para position of the phenyl frame underscored the scope of this methodology. The cytotoxic activities of the tert-butyl esters of prenostodione analogues were tested using six tumor cell lines. Preliminary structure-activity studies revealed the importance of the identity of the aromatic substituent at the C-4 position for cytotoxic activity. The IC50 values of these compounds were found to compare satisfactorily with those of the commercially available drugs etoposide and cisplatin. Furthermore, the compounds with, respectively, -OMe (14d) and -NO2 (14f) groups at C-4 were more selective than these control compounds in PC-3, K-562, and MCF-7 cells. Also, computational studies were carried out to determine the ADMET profiles and passive membrane permeabilities of the compounds. The results suggested the promise of 14d and 14f as hit compounds for the development of new anticancer agents.


Sujet(s)
Indoles
14.
Microb Cell Fact ; 20(1): 88, 2021 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-33888152

RÉSUMÉ

SARS-CoV-2 is a novel ß-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.


Sujet(s)
Anticorps antiviraux/usage thérapeutique , Traitements médicamenteux de la COVID-19 , Anticorps monoclonaux/biosynthèse , Anticorps monoclonaux/composition chimique , Anticorps monoclonaux/usage thérapeutique , Anticorps neutralisants/composition chimique , Anticorps neutralisants/usage thérapeutique , Anticorps antiviraux/sang , COVID-19/immunologie , COVID-19/virologie , Humains , Immunité humorale , Immunité innée , Immunoglobulines/composition chimique , Immunoglobulines/usage thérapeutique , SARS-CoV-2/immunologie , SARS-CoV-2/isolement et purification , Anticorps à chaîne unique/composition chimique , Anticorps à chaîne unique/usage thérapeutique
15.
PLoS Negl Trop Dis ; 15(2): e0009104, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33600419

RÉSUMÉ

The flatworm Taenia solium causes human and pig cysticercosis. When cysticerci are established in the human central nervous system, they cause neurocysticercosis, a potentially fatal disease. Neurocysticercosis is a persisting public health problem in rural regions of Mexico and other developing countries of Latin America, Asia, and Africa, where the infection is endemic. The great variability observed in the phenotypic and genotypic traits of cysticerci result in a great heterogeneity in the patterns of molecules secreted by them within their host. This work is aimed to identify and characterize cysticercal secretion proteins of T. solium cysticerci obtained from 5 naturally infected pigs from Guerrero, Mexico, using 2D-PAGE proteomic analysis. The isoelectric point (IP) and molecular weight (MW) of the spots were identified using the software ImageMaster 2D Platinum v.7.0. Since most secreted proteins are impossible to identify by mass spectrometry (MS) due to their low concentration in the sample, a novel strategy to predict their sequence was applied. In total, 108 conserved and 186 differential proteins were identified in five cysticercus cultures. Interestingly, we predicted the sequence of 14 proteins that were common in four out of five cysticercus cultures, which could be used to design vaccines or diagnostic methods for neurocysticercosis. A functional characterization of all sequences was performed using the algorithms SecretomeP, SignalP, and BlastKOALA. We found a possible link between signal transduction pathways in parasite cells and human cancer due to deregulation in signal transduction pathways. Bioinformatics analysis also demonstrated that the parasite release proteins by an exosome-like mechanism, which could be of biological interest.


Sujet(s)
Cysticercus/métabolisme , Protéome , Taenia solium/métabolisme , Animaux , Cysticercose/médecine vétérinaire , Électrophorèse bidimensionnelle sur gel , Protéines d'helminthes/génétique , Protéines d'helminthes/isolement et purification , Analyse de séquence de protéine , Transduction du signal , Suidae , Maladies des porcs/parasitologie , Taenia solium/génétique , Taenia solium/croissance et développement
16.
Front Immunol ; 11: 577815, 2020.
Article de Anglais | MEDLINE | ID: mdl-33117380

RÉSUMÉ

T cells recognizing epitopes on the surface of mycobacteria-infected macrophages can impart protection, but with associated risk for reactivation to lung pathology. We aimed to identify antibodies specific to such epitopes, which carry potentials for development toward novel therapeutic constructs. Since epitopes presented in the context of major histocompatibility complex alleles are rarely recognized by naturally produced antibodies, we used a phage display library for the identification of monoclonal human single domain antibody producing clones. The selected 2C clone displayed T cell receptor-like recognition of an HLA-A*0201 bound 199KLVANNTRL207 peptide from the Ag85B antigen, which is known to be an immunodominant epitope for human T cells. The specificity of the selected domain antibody was demonstrated by solid phase immunoassay and by immunofluorescent surface staining of peptide loaded cells of the T2 cell line. The antibody affinity binding was determined by biolayer interferometry. Our results validated the used technologies as suitable for the generation of antibodies against epitopes on the surface of Mycobacterium tuberculosis infected cells. The potential approaches forward the development of antibody in immunotherapy of tuberculosis have been outlined in the discussion.


Sujet(s)
Acyltransferases/immunologie , Antigènes bactériens/immunologie , Antituberculeux/pharmacologie , Protéines bactériennes/immunologie , Antigènes HLA-A/immunologie , Épitopes immunodominants , Mycobacterium tuberculosis/immunologie , Anticorps à chaîne unique/pharmacologie , Lymphocytes T/immunologie , Tuberculose/prévention et contrôle , Spécificité des anticorps , Antituberculeux/immunologie , Lignée cellulaire tumorale , Techniques d'exposition à la surface cellulaire , Test ELISA , Technique d'immunofluorescence , Humains , Anticorps à chaîne unique/génétique , Anticorps à chaîne unique/immunologie , Tuberculose/immunologie , Tuberculose/microbiologie
17.
Mol Immunol ; 125: 123-130, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32659597

RÉSUMÉ

The development of a more efficient vaccine is needed to improve tuberculosis control. One of the current approaches is to identify immunogenic T-cell peptides that can elicit a protective and specific immune response. These peptides come from immunogenic proteins of the pathogen. The PE_PGRS33 protein of Mycobacterium tuberculosis has been proved immunogenic. However, little is known about immunogenic T-cell peptides of PE_PGRS33 and their interactions with MHC-II molecules. Therefore, we used the SYFPHEITHI database to determine the immunogenic PE_PGRS33 T-cell peptides. Next, we built homology models by using MOE v2018.1 software in order to obtain information about the specific interactions between the peptides and I-Ak. The AlgPred server was employed to look for allergenic sites in PE_PGRS33. We developed a sequence alignment between PE_PGRS33 and all the human proteins by using BLAST. Three peptides were commercially synthesized, and their activity was evaluated in vitro by the stimulation of PBMC from household contacts of TB patients. Our in silico results showed five immunogenic T-cell peptides. BLAST analysis showed low homology of PE_PGRS33 with human proteins and AlgPred did not reveal allergenic sites in PE_PGRS33. The three peptides triggered the activation of CD4+ T cells from the households contacts, showed by the production of IFN-γ. We identified three immunogenic peptides of PE_PGRS33 that demonstrated activity in vitro which allows to deepen into the immune response towards mycobacterial antigens, moving forward to the identification of new vaccine candidates.


Sujet(s)
Antigènes bactériens/immunologie , Lymphocytes T CD4+/immunologie , Mycobacterium tuberculosis/immunologie , Vaccins antituberculeux/immunologie , Humains , Activation des lymphocytes/immunologie , Peptides/immunologie , Vaccins sous-unitaires/immunologie
18.
Tuberculosis (Edinb) ; 117: 36-44, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-31378266

RÉSUMÉ

Plasminogen and plasmin are fundamental components of the fibrinolytic system that interact with microorganisms generating different immunopathological effects. The molecules of Mycobacterium tuberculosis interplaying with plasminogen have already been identified and characterized. In this work, we studied the effects of plasmin(ogen) bound toMycobacterium bovisCalmette-Guérin (BCG) on phagocytosis in THP1 macrophages as well as in granuloma formation and development on in vitrohuman granuloma model. For this purpose, BCG was coated with plasminogen and plasmin, obtained after activation of zymogen by tissue plasminogen activator. The results showed a significant reduction in the number of bacteria phagocytosed by macrophages in presence of plasminogen or plasmin on BCG surface. On the other hand, at 3 days BCG/plasminogen/plasmin induced an increase granuloma numbers with respect to those induced by uncoated bacteria. BCG/plasminogen/environments also showed a significant increase of IL-6 secretion. At 7 days, a reduced number of granulomas and an increased number of bacteria was observed with respect to uncoated BCG environment. Altogether, these results showed that plasmin(ogen) on the mycobacterial surface affects phagocytosis, granuloma development and the cytokine context, thus resulting in an increased number of bacteria in granulomas.


Sujet(s)
Fibrinolysine/métabolisme , Granulome/microbiologie , Mycobacterium bovis/métabolisme , Phagocytose/physiologie , Plasminogène/métabolisme , Tuberculose/microbiologie , Cellules cultivées , Cytokines/biosynthèse , Granulome/immunologie , Humains , Macrophages/microbiologie , Mycobacterium bovis/isolement et purification , Tuberculine , Tuberculose/immunologie , Tuberculose/métabolisme
19.
Microb Cell Fact ; 18(1): 11, 2019 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-30660186

RÉSUMÉ

BACKGROUND: Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. RESULTS: The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. CONCLUSIONS: rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis.


Sujet(s)
Transporteurs ABC/métabolisme , Protéines bactériennes/métabolisme , Mycobacterium tuberculosis/métabolisme , Pichia/métabolisme , Transporteurs ABC/composition chimique , Transporteurs ABC/génétique , Transporteurs ABC/immunologie , Aldehyde oxidase/génétique , Anticorps antibactériens/immunologie , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Protéines bactériennes/immunologie , Bioréacteurs , Dichroïsme circulaire , Électrophorèse sur gel de polyacrylamide , Glycosylation , Humains , Pichia/croissance et développement , Plasmides/métabolisme , Régions promotrices (génétique) , Structure secondaire des protéines , Protéines recombinantes/biosynthèse , Protéines recombinantes/composition chimique , Protéines recombinantes/isolement et purification , Spectrométrie de masse MALDI
20.
Scand J Immunol ; 89(1): e12728, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-30375016

RÉSUMÉ

The interaction of a pathogen with its host cell takes place at different levels, including the bioenergetics adaptation of both the pathogen and the host cell in the course of an infection. In this regard, Mycobacterium tuberculosis infection of macrophages induces mitochondrial membrane potential (Δψm) changes and cytochrome c release, depending on the bacteria strain's virulence, and the mitochondrial dynamics is modified by pathogens, such as Listeria monocytogenes. Here, we investigated whether two M. tuberculosis virulence factors are able to induce distinguishable bioenergetics traits in human monocyte-derived macrophages (MDMs). Results showed that Rv1411c (LprG, p27) induced mitochondrial fission, lowered the cell respiratory rate and modified the kinetics of mitochondrial Ca2+ uptake in response to agonist stimulation. In contrast, Rv1818c (PE_PGRS33) induced mitochondrial fusion, but failed to induce any appreciable effect on cell respiratory rate or mitochondrial Ca2+ uptake. Overall, these results suggest that two different virulence factors from the same pathogen (M. tuberculosis) induce differential effects on mitochondrial dynamics, cell respiration and mitochondrial Ca2+ uptake in MDMs. The timing of differential mitochondrial activity could ultimately determine the outcome of host-pathogen interactions.


Sujet(s)
Interactions hôte-pathogène/physiologie , Macrophages/microbiologie , Dynamique mitochondriale/physiologie , Mycobacterium tuberculosis/pathogénicité , Facteurs de virulence/métabolisme , Protéines bactériennes/métabolisme , Humains , Macrophages/métabolisme , Tuberculose/métabolisme , Tuberculose/microbiologie , Virulence/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE