Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Science ; 377(6603): 302-306, 2022 07 15.
Article de Anglais | MEDLINE | ID: mdl-35737811

RÉSUMÉ

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

2.
Chemosphere ; 302: 134708, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35490761

RÉSUMÉ

Interfacing an electrocatalyst with photoactive semiconductor surfaces is an emerging strategy to enhance the photocathode performance for the solar water reduction reaction. Herein, a core-shell heterostructure photocathode consisting of vanadium disulfide (VS2) as a 2D layered electrocatalyst directly deposited on silicon nanowire (Si NWs) surface is realized via single-step chemical vapor deposition towards efficient hydrogen evolution under solar irradiation. In an electrochemical study, 2D VS2/Si NWs photocathode exhibits a saturated photocurrent density (17 mA cm-2) with a maximal photoconversion efficiency of 10.8% at -0.53 V vs. RHE in neutral electrolyte condition (pH∼7). Under stimulated irradiation, the heterostructure photocathode produces a hydrogen gas evolution around 23 µmol cm-2 h-1 (at 0 V vs. RHE). Further, electrochemical impedance spectroscopy (EIS) analysis reveals that the high performance of the core-shell photocathode is associated with the generation of the high density of electron-hole pairs and the separation of photocarriers with an extended lifetime. Density functional theory calculations substantiate that core-shell photocathodes are active at very low Gibbs free energy (ΔGH*) with abundant hydrogen evolution reaction (HER) active sulphur sites. The charge density difference plot with Bader analysis of heterostructure reveals the accumulation of electrons on the sulphur sites via modulating the electronic band structure near the interface. Thus, facilitates the barrier-free charge transport owing to the synergistic effect of Si NWs@2D-VS2 core-shell hybrid photocatalyst for enhanced solar water reduction performance.

3.
Science ; 376(6588): 73-77, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35175829

RÉSUMÉ

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat-stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...