Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Mater Sci Eng C Mater Biol Appl ; 124: 112032, 2021 May.
Article de Anglais | MEDLINE | ID: mdl-33947534

RÉSUMÉ

Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.


Sujet(s)
Amnios , Structures d'échafaudage tissulaires , Animaux , Ciments osseux/pharmacologie , Régénération osseuse , Phosphates de calcium/pharmacologie , Ostéogenèse , Rats
2.
Front Bioeng Biotechnol ; 9: 661332, 2021.
Article de Anglais | MEDLINE | ID: mdl-34046400

RÉSUMÉ

Thanks to their biological properties, amniotic membrane (AM), and its derivatives are considered as an attractive reservoir of stem cells and biological scaffolds for bone regenerative medicine. The objective of this systematic review was to assess the benefit of using AM and amniotic membrane-derived products for bone regeneration. An electronic search of the MEDLINE-Pubmed database and the Scopus database was carried out and the selection of articles was performed following PRISMA guidelines. This systematic review included 42 articles taking into consideration the studies in which AM, amniotic-derived epithelial cells (AECs), and amniotic mesenchymal stromal cells (AMSCs) show promising results for bone regeneration in animal models. Moreover, this review also presents some commercialized products derived from AM and discusses their application modalities. Finally, AM therapeutic benefit is highlighted in the reported clinical studies. This study is the first one to systematically review the therapeutic benefits of AM and amniotic membrane-derived products for bone defect healing. The AM is a promising alternative to the commercially available membranes used for guided bone regeneration. Additionally, AECs and AMSCs associated with an appropriate scaffold may also be ideal candidates for tissue engineering strategies applied to bone healing. Here, we summarized these findings and highlighted the relevance of these different products for bone regeneration.

3.
J Biomed Mater Res A ; 108(10): 2044-2056, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32319212

RÉSUMÉ

Thanks to its biological properties, the human amniotic membrane (HAM) can be used as a barrier membrane for guided bone regeneration (GBR). However, no study has assessed the influence of the preservation method of HAM for this application. This study aimed to establish the most suitable preservation method of HAM for GBR. Fresh (F), cryopreserved (C) lyophilized (L), and decellularized and lyophilized (DL) HAM were compared. The impact of preservation methods on collagen and glycosaminoglycans (GAG) content was evaluated using Masson's trichrome and alcian blue staining. Their suture retention strengths were assessed. In vitro, the osteogenic potential of human bone marrow mesenchymal stromal cells (hBMSCs) cultured on the four HAMs was evaluated using alkaline phosphatase staining and alizarin red quantification assay. In vivo, the effectiveness of fresh and preserved HAMs for GBR was assessed in a mice diaphyseal bone defect after 1 week or 1 month healing. Micro-CT and histomorphometric analysis were performed. The major structural components of HAM (collagen and GAG) were preserved whatever the preservation method used. The tearing strength of DL-HAM was significantly higher. In vitro, hBMSCs seeded on DL-HAM displayed a stronger ALP staining, and alizarin red staining quantification was significantly higher at Day 14. In vivo, L-HAM and DL-HAM significantly enhanced early bone regeneration. One month after the surgery, only DL-HAM slightly promoted bone regeneration. Several preserving methods of HAM have been studied for bone regeneration. Here, we have demonstrated that DL-HAM achieved the most promising results for GBR.


Sujet(s)
Amnios/composition chimique , Régénération osseuse , Cellules souches mésenchymateuses/cytologie , Structures d'échafaudage tissulaires/composition chimique , Animaux , Cellules cultivées , Cryoconservation , Humains , Souris , Ostéogenèse , Ingénierie tissulaire/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE