Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 85
Filtrer
1.
Assessment ; : 10731911241236699, 2024 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-38523357

RÉSUMÉ

Adults with attention-deficit/hyperactivity disorder (ADHD) experience impairing levels of inattention and/or hyperactivity-impulsivity, while individuals without ADHD experience these symptoms to a lesser extent. Yet, ADHD self-report scales so far hardly captured continuous distributions across the general population. In addition, they focused on weaknesses and ignored strengths. To address these shortcomings, we present here the Strengths and Weaknesses of ADHD and Normal-Behavior Scale Self-Report (SWAN-DE-SB). The normal distribution of the data collected and the scale's internal consistency, and factorial and convergent validity were assessed using data from a general population sample. Its clinical utility was evaluated by comparing scores from a clinical sample and a sample of individuals without ADHD and by calculating optimal cut-off values for specificity and sensitivity. The SWAN-DE-SB demonstrated normal distribution of the data collected, high internal consistency, and factorial and convergent validity. It reliably discriminated individuals with and without ADHD, with high specificity and sensitivity. It should therefore be considered a psychometrically convincing measure to assess strengths and weaknesses of ADHD symptoms and normal behavior in clinical and general population samples.

2.
Psychol Med ; 54(2): 278-288, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37212052

RÉSUMÉ

BACKGROUND: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. METHODS: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). RESULTS: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. CONCLUSIONS: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.


Sujet(s)
Trouble bipolaire , Humains , Trouble bipolaire/imagerie diagnostique , Trouble bipolaire/anatomopathologie , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Imagerie par résonance magnétique/méthodes , Apprentissage machine , , Machine à vecteur de support
3.
Epilepsia Open ; 9(1): 287-299, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38017670

RÉSUMÉ

OBJECTIVE: We aimed to investigate differences in episodic memory networks between patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis and healthy controls, especially with regards to the parietal memory network (PMN), as well as their relation to neuropsychological memory performance after mesial temporal resection. METHODS: 28 healthy subjects as well as 21 patients with TLE (12 left, 9 right) were investigated using a spatial memory fMRI paradigm, which has been shown to activate the PMN. Regions of interest (ROI) were defined based on the results of the second-level analyses and activations within the predefined ROIs were compared across groups and correlated with postoperative verbal and nonverbal memory scores. RESULTS: Healthy subjects showed activations within regions belonging to the dorsal visual stream and the PMN as well as the bilateral parahippocampal place area, the bilateral frontal eye field, and the bilateral middle frontal gyrus. Comparison between groups revealed that TLE patients activated significantly less in the left middle occipital gyrus and the right precuneus. The activation pattern in left TLE patients showed further reductions, mainly in areas belonging to the dorsal visual stream and the PMN within the left hemisphere. Activations within the left superior parietal lobulus, bilateral inferior parietal lobulus, bilateral middle temporal gyrus, left precuneus, left frontal eye field, and left middle frontal gyrus correlated significantly with postoperative verbal memory scores, and activations within the left superior parietal lobulus, left inferior parietal lobulus, left middle temporal gyrus, and left precuneus correlated significantly with higher performance in postoperative nonverbal memory scores. SIGNIFICANCE: The PMN is involved in episodic memory encoding. Higher activations in areas belonging to the PMN and the dorsal visual stream, especially within the left hemisphere, before amygdalohippocampectomy may result in higher postoperative memory scores. PLAIN LANGUAGE SUMMARY: This study aims to investigate the effects of epilepsy due to hippocampal sclerosis, i.e. scarring in the temporal lobe, on memory networks in the brain. We discovered that especially patients with left-sided hippocampal sclerosis show reduced brain activations in visual areas and memory networks within the left hemisphere of the brain during orientation in space. Importantly, higher activations within these areas may result in better memory after epilepsy surgery.


Sujet(s)
Épilepsie temporale , Sclérose de l'hippocampe , Mémoire épisodique , Humains , Épilepsie temporale/chirurgie , Lobe temporal/chirurgie , Encéphale
4.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 71-82, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37479914

RÉSUMÉ

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation treatment used as an alternative or complementary treatment for various neuropsychiatric disorders, and could be an alternative or add-on therapy to psychostimulants in attention-deficit hyperactivity disorder (ADHD). Previous studies provided some evidence for improvements in cognition and clinical symptoms in pediatric and adult ADHD patients. However, data from multi-center randomized controlled trials (RCTs) for this condition are lacking. Thus, our aim is to evaluate short- and mid-term effects of tDCS in this multi-center, randomized, double blind, and sham-controlled, parallel group clinical trial with a 1:1 randomization ratio. Primary endpoint is the total score of DSM-IV scale of the internationally established Conners' Adult ADHD Rating Scales (German self-report screening version, CAARS-S-SR), at day 14 post-intervention (p.i.) to detect short-term lasting effects analyzed via analyses of covariance (ANCOVAs). In case of significant between-groups differences at day 14 p.i., hierarchically ordered hypotheses on mid-term lasting effects will be investigated by linear mixed models with visit (5 time points), treatment, treatment by visit interaction, and covariates as fixed categorical effects plus a patient-specific visit random effect, using an unstructured covariance structure to model the residual within-patient errors. Positive results of this clinical trial will expand the treatment options for adult ADHD patients with tDCS and provide an alternative or add-on therapy to psychostimulants with a low risk for side effects.Trial Registration The trial was registered on July 29, 2022 in the German Clinical Trials Register (DRKS00028148).


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Stimulants du système nerveux central , Stimulation transcrânienne par courant continu , Adulte , Humains , Trouble déficitaire de l'attention avec hyperactivité/diagnostic , Stimulants du système nerveux central/usage thérapeutique , Cognition , Méthode en double aveugle , Études multicentriques comme sujet , Essais contrôlés randomisés comme sujet , Stimulation transcrânienne par courant continu/méthodes , Résultat thérapeutique
5.
Brain Sci ; 13(6)2023 May 27.
Article de Anglais | MEDLINE | ID: mdl-37371350

RÉSUMÉ

The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2-74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0-71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.

6.
Article de Anglais | MEDLINE | ID: mdl-36898634

RÉSUMÉ

BACKGROUND: In bipolar disorder (BD), the alternation of extreme mood states indicates deficits in emotion processing, accompanied by aberrant neural function of the emotion network. The present study investigated the effects of an emotion-centered psychotherapeutic intervention on amygdala responsivity and connectivity during emotional face processing in BD. METHODS: In a randomized controlled trial within the multicentric BipoLife project, euthymic patients with BD received one of two interventions over 6 months: an unstructured, emotion-focused intervention (FEST), where patients were guided to adequately perceive and label their emotions (n = 28), or a specific, structured, cognitive behavioral intervention (SEKT) (n = 31). Before and after interventions, functional magnetic resonance imaging was conducted while patients completed an emotional face-matching paradigm (final functional magnetic resonance imaging sample of patients completing both measurements: SEKT, n = 17; FEST, n = 17). Healthy control subjects (n = 32) were scanned twice after the same interval without receiving any intervention. Given the focus of FEST on emotion processing, we expected FEST to strengthen amygdala activation and connectivity. RESULTS: Clinically, both interventions stabilized patients' euthymic states in terms of affective symptoms. At the neural level, FEST versus SEKT increased amygdala activation and amygdala-insula connectivity at postintervention relative to preintervention time point. In FEST, the increase in amygdala activation was associated with fewer depressive symptoms (r = 0.72) 6 months after intervention. CONCLUSIONS: Enhanced activation and functional connectivity of the amygdala after FEST versus SEKT may represent a neural marker of improved emotion processing, supporting the FEST intervention as an effective tool in relapse prevention in patients with BD.


Sujet(s)
Trouble bipolaire , Humains , Cartographie cérébrale , Voies nerveuses , Amygdale (système limbique) , Émotions/physiologie , Psychothérapie
7.
Res Sq ; 2023 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-36824922

RÉSUMÉ

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.

8.
J Neural Transm (Vienna) ; 130(4): 585-596, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36808307

RÉSUMÉ

Laughter plays an important role in group formation, signaling social belongingness by indicating a positive or negative social intention towards the receiver. In adults without autism, the intention of laughter can be correctly differentiated without further contextual information. In autism spectrum disorder (ASD), however, differences in the perception and interpretation of social cues represent a key characteristic of the disorder. Studies suggest that these differences are associated with hypoactivation and altered connectivity among key nodes of the social perception network. How laughter, as a multimodal nonverbal social cue, is perceived and processed neurobiologically in association with autistic traits has not been assessed previously. We investigated differences in social intention attribution, neurobiological activation, and connectivity during audiovisual laughter perception in association with the degree of autistic traits in adults [N = 31, Mage (SD) = 30.7 (10.0) years, nfemale = 14]. An attenuated tendency to attribute positive social intention to laughter was found with increasing autistic traits. Neurobiologically, autistic trait scores were associated with decreased activation in the right inferior frontal cortex during laughter perception and with attenuated connectivity between the bilateral fusiform face area with bilateral inferior and lateral frontal, superior temporal, mid-cingulate and inferior parietal cortices. Results support hypoactivity and hypoconnectivity during social cue processing with increasing ASD symptoms between socioemotional face processing nodes and higher-order multimodal processing regions related to emotion identification and attribution of social intention. Furthermore, results reflect the importance of specifically including signals of positive social intention in future studies in ASD.


Sujet(s)
Trouble du spectre autistique , Trouble autistique , Rire , Adulte , Humains , Femelle , Cartographie cérébrale/méthodes , Intention , Imagerie par résonance magnétique/méthodes , Perception sociale
9.
Article de Anglais | MEDLINE | ID: mdl-36087699

RÉSUMÉ

BACKGROUND: In bipolar disorder, impaired affective theory of mind (aToM) performance and aberrant neural activation in the ToM brain network partly explain social functioning impairments. However, it is not yet known whether psychotherapy of bipolar disorder influences neuroimaging markers of aToM. METHODS: In this study, conducted within the multicentric randomized controlled trial of the BipoLife consortium, patients with euthymic bipolar disorder underwent 2 group interventions over 6 months (mean = 28.45 weeks): 1) a specific, cognitive behavioral intervention (specific psychotherapeutic intervention [SEKT]) (n = 31) targeting impulse regulation, ToM, and social skills and 2) an emotion-focused intervention (FEST) (n = 28). To compare the effect of SEKT and FEST on neural correlates of aToM, patients performed an aToM task during functional magnetic resonance imaging before and after interventions (final functional magnetic resonance imaging sample of pre- and postcompleters, SEKT: n = 16; FEST: n = 17). Healthy control subjects (n = 32) were scanned twice with the same time interval. Because ToM was trained in SEKT, we expected an increased ToM network activation in SEKT relative to FEST postintervention. RESULTS: Both treatments effectively stabilized patients' euthymic state in terms of affective symptoms, life satisfaction, and global functioning. Confirming our expectations, SEKT patients showed increased neural activation within regions of the ToM network, bilateral temporoparietal junction, posterior cingulate cortex, and precuneus, whereas FEST patients did not. CONCLUSIONS: The stabilizing effect of SEKT on clinical outcomes went along with increased neural activation of the ToM network, while FEST possibly exerted its positive effect by other, yet unexplored routes.


Sujet(s)
Trouble bipolaire , Théorie de l'esprit , Humains , Théorie de l'esprit/physiologie , Encéphale , Trouble cyclothymique , Psychothérapie
10.
Front Psychiatry ; 14: 1294314, 2023.
Article de Anglais | MEDLINE | ID: mdl-38250266

RÉSUMÉ

Introduction: The role of emotional dysregulation (ED) in attention-deficit/hyperactivity disorder (ADHD) has become an important issue. This study, in which we analyzed data from a predictive pharmaco-EEG-trial, aimed to examine whether symptoms of ED in adult ADHD affect ADHD symptom severity, brain arousal regulation as measured by resting EEG, and the response to stimulant medication. Methods: ED is defined as having a sex- and age-corrected T-score of >70 on the emotional lability subscale of the German version of Conners' Adult ADHD Rating Scale. A total of 115 participants were included in the study, 56 of whom had ED. Participants with ED were more impaired in terms of the severity of core ADHD symptoms, especially inattentive symptoms, comorbid depressive symptoms, interpersonal relationships, and quality of life. In addition, participants with ED were more likely to report a total score above 13 on the Beck Depression Inventory-II, which was considered to be the cutoff for mild depression. Results: No differences were found between the ED and non-ED groups in response to stimulant medication or in brain arousal regulation. In addition, there was no significant effect of ED with comorbid depressive symptoms on treatment response. There was a trend for subgroups that showed a change in brain arousal regulation associated with symptom improvement. Discussion: Our findings may support the assumption that ED may be an important feature of ADHD. The use of EEG-based brain arousal regulation as a diagnostic and predictive tool in ADHD in the presence of ED and comorbid depressive symptoms should be further investigated.

11.
Front Aging Neurosci ; 14: 934241, 2022.
Article de Anglais | MEDLINE | ID: mdl-36247983

RÉSUMÉ

Loss of white matter integrity (WMI) is associated with gait deficits in middle-aged and older adults. However, these deficits are often only apparent under cognitively demanding situations, such as walking and simultaneously performing a secondary cognitive task. Moreover, evidence suggests that declining executive functions (EF) are linked to gait decline, and their co-occurrence may point to a common underlying pathology, i.e., degeneration of shared brain regions. In this study, we applied diffusion tensor imaging (DTI) and a standardized gait assessment under single- and dual-tasking (DT) conditions (walking and subtracting) in 74 middle-aged and older adults without any significant gait or cognitive impairments to detect subtle WM alterations associated with gait decline under DT conditions. Additionally, the Trail Making Test (TMT) was used to assess EF, classify participants into three groups based on their performance, and examine a possible interaction between gait, EF, and WMI. Gait speed and subtracting speed while dual-tasking correlated significantly with the fractional anisotropy (FA) in the bilateral anterior corona radiata (highest r = 0.51/p < 0.0125 FWE-corrected). Dual-task costs (DTC) of gait speed correlated significantly with FA in widespread pathways, including the corpus callosum, bilateral anterior and superior corona radiata, as well as the left superior longitudinal fasciculus (highest r = -0.47/p < 0.0125 FWE-corrected). EF performance was associated with FA in the left anterior corona radiata (p < 0.05); however, EF did not significantly mediate the effects of WMI on DTC of gait speed. There were no significant correlations between TMT and DTC of gait and subtracting speed, respectively. Our findings indicate that gait decline under DT conditions is associated with widespread WM deterioration even in middle-aged and older adults without any significant gait or cognitive impairments. However, this relationship was not mediated by EF.

12.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1421-1435, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-35781841

RÉSUMÉ

Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, characterized by core symptoms of inattention, hyperactivity and impulsivity. Comorbid depression is commonly observed in ADHD-patients. Psychostimulants are recommended as first-line treatment for ADHD. Aberrant long-range temporal correlations (LRTCs) of neuronal activities in resting-state are known to be associated with disorganized thinking and concentrating difficulties (typical in ADHD) and with maladaptive thinking (typical in depression). It has yet to be examined whether (1) LRTC occur in ADHD-patients, and if so, (2) whether LRTC might be a competent biomarker in ADHD comorbid with current depression and (3) how depression affects psychostimulant therapy of ADHD symptoms. The present study registered and compared LRTCs in different EEG frequency bands in 85 adults with ADHD between groups with (n = 28) and without (n = 57) additional depressive symptoms at baseline. Treatment-related changes in ADHD, depressive symptoms and LRTC were investigated in the whole population and within each group. Our results revealed significant LRTCs existed in all investigated frequency bands. There were, however, no significant LRTC-differences between ADHD-patients with and without depressive symptoms at baseline and no LRTC-changes following treatment. However, depressed ADHD patients did seem to benefit more from the therapy with psychostimulant based on self-report.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Adulte , Humains , Trouble déficitaire de l'attention avec hyperactivité/complications , Trouble déficitaire de l'attention avec hyperactivité/traitement médicamenteux , Trouble déficitaire de l'attention avec hyperactivité/épidémiologie , Dépression/épidémiologie , Comorbidité , Repos , Électroencéphalographie
13.
Sci Rep ; 12(1): 7117, 2022 05 03.
Article de Anglais | MEDLINE | ID: mdl-35505233

RÉSUMÉ

Human nonverbal social signals are transmitted to a large extent by vocal and facial cues. The prominent importance of these cues is reflected in specialized cerebral regions which preferentially respond to these stimuli, e.g. the temporal voice area (TVA) for human voices and the fusiform face area (FFA) for human faces. But it remained up to date unknown whether there are respective specializations during resting state, i.e. in the absence of any cues, and if so, whether these representations share neural substrates across sensory modalities. In the present study, resting state functional connectivity (RSFC) as well as voice- and face-preferential activations were analysed from functional magnetic resonance imaging (fMRI) data sets of 60 healthy individuals. Data analysis comprised seed-based analyses using the TVA and FFA as regions of interest (ROIs) as well as multi voxel pattern analyses (MVPA). Using the face- and voice-preferential responses of the FFA and TVA as regressors, we identified several correlating clusters during resting state spread across frontal, temporal, parietal and occipital regions. Using these regions as seeds, characteristic and distinct network patterns were apparent with a predominantly convergent pattern for the bilateral TVAs whereas a largely divergent pattern was observed for the bilateral FFAs. One region in the anterior medial frontal cortex displayed a maximum of supramodal convergence of informative connectivity patterns reflecting voice- and face-preferential responses of both TVAs and the right FFA, pointing to shared neural resources in supramodal voice and face processing. The association of individual voice- and face-preferential neural activity with resting state connectivity patterns may support the perspective of a network function of the brain beyond an activation of specialized regions.


Sujet(s)
Reconnaissance faciale , Voix , Encéphale/physiologie , Cartographie cérébrale , Reconnaissance faciale/physiologie , Humains , Imagerie par résonance magnétique
15.
Article de Anglais | MEDLINE | ID: mdl-33551283

RÉSUMÉ

BACKGROUND: Deficits in emotion recognition have been repeatedly documented in patients diagnosed with attention-deficit/hyperactivity disorder (ADHD), but their neural basis is unknown so far. METHODS: In the current study, adult patients with ADHD (n = 44) and healthy control subjects (n = 43) underwent functional magnetic resonance imaging during explicit emotion recognition of stimuli expressing affective information in face, voice, or face-voice combinations. The employed experimental paradigm allowed us to delineate areas for processing audiovisual information based on their functional activation profile, including the bilateral posterior superior temporal gyrus/middle temporal gyrus, amygdala, medial prefrontal cortex, and precuneus, as well as the right posterior thalamus. RESULTS: As expected, unbiased hit rates for correct classification of the expressed emotions were lower in patients with ADHD than in healthy control subjects irrespective of the presented sensory modality. This deficit at a behavioral level was accompanied by lower activation in patients with ADHD versus healthy control subjects in the cortex adjacent to the right superior temporal gyrus/middle temporal gyrus and the right posterior thalamus, which represent key areas for processing socially relevant signals and their integration across modalities. A cortical region adjacent to the right posterior superior temporal gyrus was the only brain region that showed a significant correlation between brain activation and emotion identification performance. CONCLUSIONS: Altogether, these results provide the first evidence for a potential neural substrate of the observed impairments in emotion recognition in adults with ADHD.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Adulte , Encéphale , Cartographie cérébrale , Émotions/physiologie , Humains , Imagerie par résonance magnétique
16.
Parkinsonism Relat Disord ; 92: 1-6, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34649107

RÉSUMÉ

BACKGROUND: While the concept of prodromal Parkinson's disease (PD) is well established, reliable markers for the diagnosis of this disease stage are still lacking. We investigated the functional connectivity of the putamina in a resting-state functional MRI analysis in persons with at least two prodromal factors for PD, which is considered a high risk for PD (HRPD) group, in comparison to PD patients and controls. METHODS: We included 16 PD patients, 20 healthy controls and 20 HRPD subjects. Resting state echo planar images and anatomical T1-weighted images were acquired with a Siemens Prisma 3 T scanner. The computation of correlation maps of the left and the right putamen to the rest of the brain was done in a voxel-wise approach using the REST toolbox. Finally, group differences in the correlation maps were compared on voxel-level and summarized in cluster z-statistics. RESULTS: Compared to both PD patients and healthy controls, the HRPD group showed higher functional connectivity of both putamina to brain regions involved in execution of motion and coordination (cerebellum, vermis, pre- and postcentral gyrus, supplementary motor area) as well as the planning of movement (precuneus, cuneus, superior medial frontal lobe). CONCLUSIONS: Higher functional connectivity of the putamina of HRPD subjects to other brain regions involved in motor execution and planning may indicate a compensatory mechanism. Follow-up evaluation and independent longitudinal studies should test whether our results reflect a dynamic process associated with a prodromal PD state.


Sujet(s)
Imagerie par résonance magnétique , Maladie de Parkinson/imagerie diagnostique , Maladie de Parkinson/physiopathologie , Adaptation physiologique/physiologie , Sujet âgé , Encéphale/imagerie diagnostique , Encéphale/physiopathologie , Cartographie cérébrale , Études cas-témoins , Femelle , Humains , Mâle , Adulte d'âge moyen , Activité motrice , Mouvement , Voies nerveuses/imagerie diagnostique , Voies nerveuses/physiopathologie , Symptômes prodromiques , Putamen/imagerie diagnostique , Putamen/physiopathologie , Facteurs de risque
17.
Transl Psychiatry ; 11(1): 485, 2021 09 20.
Article de Anglais | MEDLINE | ID: mdl-34545071

RÉSUMÉ

In psychiatry, there has been a growing focus on identifying at-risk populations. For schizophrenia, these efforts have led to the development of early recognition and intervention measures. Despite a similar disease burden, the populations at risk of bipolar disorder have not been sufficiently characterized. Within the BipoLife consortium, we used magnetic resonance imaging (MRI) data from a multicenter study to assess structural gray matter alterations in N = 263 help-seeking individuals from seven study sites. We defined the risk using the EPIbipolar assessment tool as no-risk, low-risk, and high-risk and used a region-of-interest approach (ROI) based on the results of two large-scale multicenter studies of bipolar disorder by the ENIGMA working group. We detected significant differences in the thickness of the left pars opercularis (Cohen's d = 0.47, p = 0.024) between groups. The cortex was significantly thinner in high-risk individuals compared to those in the no-risk group (p = 0.011). We detected no differences in the hippocampal volume. Exploratory analyses revealed no significant differences in other cortical or subcortical regions. The thinner cortex in help-seeking individuals at risk of bipolar disorder is in line with previous findings in patients with the established disorder and corresponds to the region of the highest effect size in the ENIGMA study of cortical alterations. Structural alterations in prefrontal cortex might be a trait marker of bipolar risk. This is the largest structural MRI study of help-seeking individuals at increased risk of bipolar disorder.


Sujet(s)
Trouble bipolaire , Trouble bipolaire/imagerie diagnostique , Encéphale/imagerie diagnostique , Humains , Imagerie par résonance magnétique , Cortex préfrontal/imagerie diagnostique , Facteurs de risque
18.
Eur Arch Psychiatry Clin Neurosci ; 271(7): 1231-1243, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34146143

RÉSUMÉ

Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (dlPFC) is currently evolving as an effective and safe therapeutic tool in the treatment of major depressive disorder (MDD). However, already established rTMS treatment paradigms are rather time-consuming. With theta burst stimulation (TBS), a patterned form of rTMS, treatment time can be substantially reduced. Pilot studies and a randomized controlled trial (RCT) demonstrate non-inferiority of TBS to 10 Hz rTMS and support a wider use in MDD. Still, data from placebo-controlled multicenter RCTs are lacking. In this placebo-controlled multicenter study, 236 patients with MDD will be randomized to either intermittent TBS (iTBS) to the left and continuous TBS (cTBS) to the right dlPFC or bilateral sham stimulation (1:1 ratio). The treatment will be performed with 80% resting motor threshold intensity over six consecutive weeks (30 sessions). The primary outcome is the treatment response rate (Montgomery-Asberg Depression Rating Scale reduction ≥ 50%). The aim of the study is to confirm the superiority of active bilateral TBS compared to placebo treatment. In two satellite studies, we intend to identify possible MRI-based and (epi-)genetic predictors of responsiveness to TBS therapy. Positive results will support the clinical use of bilateral TBS as an advantageous, efficient, and well-tolerated treatment and pave the way for further individualization of MDD therapy.Trial registration: ClinicalTrials.gov (NCT04392947).


Sujet(s)
Trouble dépressif majeur , Stimulation magnétique transcrânienne , Trouble dépressif majeur/physiopathologie , Trouble dépressif majeur/thérapie , Cortex préfrontal dorsolatéral/physiopathologie , Méthode en double aveugle , Humains , Études multicentriques comme sujet , Essais contrôlés randomisés comme sujet , Résultat thérapeutique
19.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-33748971

RÉSUMÉ

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Sujet(s)
Trouble déficitaire de l'attention avec hyperactivité , Trouble du spectre autistique , Adolescent , Adulte , Encéphale/imagerie diagnostique , Noyau caudé , Enfant , Humains , Imagerie par résonance magnétique
20.
Brain Sci ; 11(2)2021 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-33578741

RÉSUMÉ

Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...