Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Elife ; 112022 10 27.
Article de Anglais | MEDLINE | ID: mdl-36300780

RÉSUMÉ

The origins and evolution of the outstanding Neotropical biodiversity are a matter of intense debate. A comprehensive understanding is hindered by the lack of deep-time comparative data across wide phylogenetic and ecological contexts. Here, we quantify the prevailing diversification trajectories and drivers of Neotropical diversification in a sample of 150 phylogenies (12,512 species) of seed plants and tetrapods, and assess their variation across Neotropical regions and taxa. Analyses indicate that Neotropical diversity has mostly expanded through time (70% of the clades), while scenarios of saturated and declining diversity account for 21% and 9% of Neotropical diversity, respectively. Five biogeographic areas are identified as distinctive units of long-term Neotropical evolution, including Pan-Amazonia, the Dry Diagonal, and Bahama-Antilles. Diversification dynamics do not differ across these areas, suggesting no geographic structure in long-term Neotropical diversification. In contrast, diversification dynamics differ across taxa: plant diversity mostly expanded through time (88%), while a substantial fraction (43%) of tetrapod diversity accumulated at a slower pace or declined towards the present. These opposite evolutionary patterns may reflect different capacities for plants and tetrapods to cope with past climate changes.


Sujet(s)
Biodiversité , Plantes , Phylogenèse , Plantes/génétique , Brésil , Spéciation génétique
2.
Zootaxa ; 4979(1): 7094, 2021 May 28.
Article de Anglais | MEDLINE | ID: mdl-34187013

RÉSUMÉ

Zootaxa came as a new and innovative publication medium for taxonomy, amidst a scenario of devaluation of this important biological science. After 20 years, it has ascertained itself as one of the main journals in animal taxonomy. However, the contribution of the journal to the taxonomy of Mammalia (mammals), one of the most studied groups of animals with a long-standing, dedicated spectrum of specialized journals (mammalogy), could have been expected as minor. All the current and former editors of the Mammalia section of Zootaxa analyzed the relative contribution of the journal to the description of new species of mammals since 2001. We also analyzed the contribution of Zootaxa by taxon, geographic origin of taxa, and geographic origin of first authors. The taxonomic methodology of authors in species description is described as well as the temporal trends in publications and publication subjects. We highlight the editors' picks and eventually, the challenges for the future. We found that Zootaxa has had a significant contribution to mammalogy, being the second journal (the first being Journal of Mammalogy) in terms of number of new species described (76; 10.6% of the new mammalian species described between 2001 and 2020). The majority of the new species were described following an integrative taxonomic approach with at least two sources of data (86%). The analysis of published taxa, their geographic origin, and the country of origin of first authors shows a wide coverage and exhaustive representation, except for the species from the Nearctic. We conclude that Zootaxa has likely responded to a repressed demand for an additional taxonomic journal in mammalogy, with as possible appeals the absence of publication fees and an established publication speed. With 246 articles published in the past 20 years, the Mammalia section of Zootaxa embraces a large spectrum of systematic subjects going beyond alpha taxonomy. The challenges for the future are to encourage publications of authors from the African continent, still poorly represented, and from the palaeontology community, as the journal has been open to palaeontology since its early days.


Sujet(s)
Mammifères/classification , Animaux , Périodiques comme sujet
3.
Mol Phylogenet Evol ; 136: 241-253, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-30885830

RÉSUMÉ

Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family's phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias - formerly placed in the Capromyidae family - as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.


Sujet(s)
Phylogenèse , Rodentia/classification , Rodentia/génétique , Animaux , Séquence nucléotidique , Théorème de Bayes , Brésil , Évolution moléculaire , Exons/génétique , Analyse de séquence d'ADN , Antilles
4.
Mol Biol Evol ; 34(3): 613-633, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28025278

RÉSUMÉ

Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes.


Sujet(s)
Génome mitochondrial , Mitochondries/génétique , Rodentia/génétique , Animaux , Séquence nucléotidique , Théorème de Bayes , Évolution biologique , ADN mitochondrial/génétique , Évolution moléculaire , Variation génétique , Phylogenèse , Phylogéographie/méthodes , Rats , Analyse de séquence d'ADN/méthodes , Amérique du Sud
5.
Mol Phylogenet Evol ; 79: 422-32, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25008107

RÉSUMÉ

We inferred the phylogenetic relationships, divergence time and biogeography of Conopophagidae (gnateaters) based on sequence data of mitochondrial genes (ND2, ND3 and cytb) and nuclear introns (TGFB2 and G3PDH) from 45 tissue samples (43 Conopophaga and 2 Pittasoma) representing all currently recognized species of the family and the majority of subspecies. Phylogenetic relationships were estimated by maximum likelihood and Bayesian inference. Divergence time estimates were obtained based on a Bayesian relaxed clock model. These chronograms were used to calculate diversification rates and reconstruct ancestral areas of the genus Conopophaga. The phylogenetic analyses support the reciprocal monophyly of the two genera, Conopophaga and Pittasoma. All species were monophyletic with the exception of C. lineata, as C. lineata cearae did not cluster with the other two C. lineata subspecies. Divergence time estimates for Conopophagidae suggested that diversification took place during the Neogene, and that the diversification rate within Conopophaga clade was highest in the late Miocene, followed by a slower diversification rate, suggesting a diversity-dependent pattern. Our analyses of the diversification of family Conopophagidae provided a scenario for evolution in Terra Firme forest across tropical South America. The spatio-temporal pattern suggests that Conopophaga originated in the Brazilian Shield and that a complex sequence of events possibly related to the Andean uplift and infilling of former sedimentation basins and erosion cycles shaped the current distribution and diversity of this genus.


Sujet(s)
Évolution biologique , Passeriformes/classification , Phylogenèse , Animaux , Théorème de Bayes , Noyau de la cellule/génétique , ADN mitochondrial/génétique , Forêts , Introns , Fonctions de vraisemblance , Modèles génétiques , Passeriformes/génétique , Phylogéographie , Analyse de séquence d'ADN , Amérique du Sud
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE