Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38769542

RÉSUMÉ

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Sujet(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Modèles animaux de maladie humaine , Muscles squelettiques , Dystrophie myotonique , Jonction neuromusculaire , Dystrophie myotonique/génétique , Dystrophie myotonique/métabolisme , Dystrophie myotonique/physiopathologie , Animaux , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Type 2/génétique , Jonction neuromusculaire/métabolisme , Muscles squelettiques/métabolisme , Muscles squelettiques/innervation , Muscles squelettiques/anatomopathologie , Souris , Humains , Histone deacetylases/métabolisme , Histone deacetylases/génétique , Récepteurs cholinergiques/métabolisme , Récepteurs cholinergiques/génétique , Mâle , Souris de lignée C57BL
2.
Nat Commun ; 10(1): 3187, 2019 07 18.
Article de Anglais | MEDLINE | ID: mdl-31320633

RÉSUMÉ

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Sujet(s)
Autophagie/physiologie , Histone deacetylases/métabolisme , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Dénervation musculaire , Muscles squelettiques/anatomopathologie , Protéines proto-oncogènes c-akt/métabolisme , Animaux , Lignée cellulaire , Complexe-1 cible mécanistique de la rapamycine/antagonistes et inhibiteurs , Complexe-1 cible mécanistique de la rapamycine/génétique , Souris , Plaque terminale motrice/anatomopathologie , Amyotrophie/anatomopathologie , Protéines proto-oncogènes c-akt/antagonistes et inhibiteurs , Protéines proto-oncogènes c-akt/génétique
3.
Skelet Muscle ; 6: 13, 2016.
Article de Anglais | MEDLINE | ID: mdl-27004103

RÉSUMÉ

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Métabolisme énergétique , Complexes multiprotéiques/métabolisme , Muscles squelettiques/enzymologie , Sérine-thréonine kinases TOR/métabolisme , Protéines suppresseurs de tumeurs/métabolisme , Protéines adaptatrices de la transduction du signal/déficit , Protéines adaptatrices de la transduction du signal/génétique , Facteurs âges , Animaux , Marqueurs biologiques/sang , Glycémie/métabolisme , Composition corporelle , Alimentation riche en graisse , Génotype , Histone deacetylases/génétique , Histone deacetylases/métabolisme , Insuline/sang , Insulinorésistance/génétique , Complexe-1 cible mécanistique de la rapamycine , Souris knockout , Maladies musculaires/enzymologie , Maladies musculaires/génétique , Maladies musculaires/physiopathologie , Obésité/enzymologie , Obésité/génétique , Obésité/prévention et contrôle , Phénotype , Protéines proto-oncogènes c-akt/métabolisme , Protéine de régulation associée à mTOR , Transduction du signal , Maigreur/enzymologie , Maigreur/génétique , Facteurs temps , Protéine-1 du complexe de la sclérose tubéreuse , Protéines suppresseurs de tumeurs/déficit , Protéines suppresseurs de tumeurs/génétique , Régulation positive
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE