Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Physiol ; 15: 1408750, 2024.
Article de Anglais | MEDLINE | ID: mdl-38725568

RÉSUMÉ

Oxygen (O2) supply is constantly maintained by the vascular network for a proper tissue oxygenation. Hypoxia is the result of an increased O2 demand and/or decreased supply and is common in both physiological conditions and human diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly regulated by the hypoxia-inducible factors, HIFs. These heterodimeric transcription factors are composed of one of three O2-dependent α subunits (HIF-1, HIF-2, and HIF-3) and a constitutively expressed O2-insensitive subunit (HIF-1ß). Among them HIF-1α is the most characterized and its activity is tightly controlled. Under hypoxia, its intracellular accumulation triggers the transcription of several genes, involved in cell survival/proliferation, autophagy, apoptosis, cell metabolism, and angiogenesis. HIF pathway is also modulated by specific microRNAs (miRNAs), thus resulting in the variation of several cellular responses, including alteration of the angiogenic process. The pro-angiogenic activity of HIF-1α is not restricted to endothelial cells, as it also affects the behavior of other cell types, including tumor and inflammatory/immune cells. In this context, exosomes play a crucial role in cell-cell communication by transferring bio-active cargos such as mRNAs, miRNAs, and proteins (e.g., VEGFA mRNA, miR210, HIF-1α). This minireview will provide a synopsis of the multiple factors able to modulate hypoxia-induced angiogenesis especially in the tumor microenvironment context. Targeting hypoxia signaling pathways by up-to-date approaches may be relevant in the design of therapeutic strategies in those pathologies where angiogenesis is dysregulated.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38399442

RÉSUMÉ

Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion. Furthermore, the Hedgehog (Hh) pathway, already known for its role in physiological processes, is a pivotal character in cancer cell growth and can represent a promising pharmacological target. In this study, we targeted Hh pathway components with cyclopamine, glabrescione B and C22 in order to observe their effect on carbonic anhydrase XII (CAXII) expression especially under hypoxia. We then performed a migration and invasion assay on two melanoma cell lines (SK-MEL-28 and A375) where Smoothened, the upstream protein involved in Hh regulation, and GLI1, the main transcription factor that determines Hh pathway activation, were chemically inhibited. Data suggest the existence of a relationship between CAXII, hypoxia and the Hedgehog pathway demonstrating that the chemical inhibition of the Hh pathway and CAXII reduction resulted in melanoma migration and invasion impairment especially under hypoxia. As in recent years drug resistance to small molecules has arisen, the development of new chemical compounds is crucial. The multitarget Hh inhibitor C22 proved to be effective without signs of cytotoxicity and, for this reason, it can represent a promising compound for future studies, with the aim to reach a better melanoma disease management.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119625, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-37981035

RÉSUMÉ

The sequestosome 1 (SQSTM1)/p62 is an adaptor protein which plays multiple roles in several cell functions, including cell survival and autophagy. Dendritic cells (DCs) are the most prominent antigen presenting cells and during their lifespan they are exposed to different oxygen tensions, including hypoxia. By using a siRNA approach we found out that p62 was implicated in the maintenance of Erk1/2 phosphorylation and preservation of hypoxic DC survival, as well as in the reduction of AMPK activation. Thus, p62 expression in DCs in hypoxic microenvironments, such as in the lymphoid organs, may extend their lifespan to ensure their functions.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Transduction du signal , Humains , Séquestosome-1/génétique , Séquestosome-1/métabolisme , Transduction du signal/physiologie , Protéines adaptatrices de la transduction du signal/génétique , Protéines adaptatrices de la transduction du signal/métabolisme , Hypoxie , Cellules dendritiques/métabolisme
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-37047096

RÉSUMÉ

Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.


Sujet(s)
Carbonic anhydrases , Mélanome , Tumeurs cutanées , Humains , Antigènes néoplasiques/métabolisme , Marqueurs biologiques tumoraux/métabolisme , Carbonic anhydrase IX/génétique , Carbonic anhydrases/métabolisme , Hypoxie , Mélanome/génétique , Microenvironnement tumoral ,
5.
Cancers (Basel) ; 14(19)2022 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-36230699

RÉSUMÉ

BACKGROUND: Malignant melanoma is the leading cause of death among skin cancer patients due to its tendency to metastasize. Alterations at the molecular level are often evident, which is why melanoma biology has garnered increasing interest. The hedgehog (Hh) pathway, which is essential for embryonic development, is aberrantly re-activated in melanoma and may represent a promising therapeutic target. In addition, carbonic anhydrase XII (CAXII) represents a poor prognostic target for hypoxic tumors, such as melanoma, and is involved in cell migration. Thus, we decided to investigate whether and how the Hh pathway and CAXII may control melanoma cell migration and invasiveness. METHODS: The migratory and invasive capabilities of SK-MEL-28 and A375 cell lines, either un-transfected or transiently transfected with Smoothened (SMO), GLI1, or CAXII siRNA, were studied under normoxic or hypoxic conditions. RESULTS: For the first time, we showed that SMO and GLI1 silencing resulted in the downregulation of CAXII expression in both moderately and highly invasive melanoma cells under hypoxia. The Hh pathway as well as CAXII inhibition by siRNA resulted in impaired malignant melanoma migration and invasion. CONCLUSION: Our results suggest that CAXII and the Hh pathway are relevant in melanoma invasion and may be novel and promising therapeutical targets for melanoma clinical management.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE