Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 2264, 2024 Mar 13.
Article de Anglais | MEDLINE | ID: mdl-38480688

RÉSUMÉ

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family localized on the mitochondrial outer membrane (MOM). Here, we report a role of NME3 in hypoxia-induced mitophagy dependent on its active site phosphohistidine but not the NDPK function. Mice carrying a knock-in mutation in the Nme3 gene disrupting NME3 active site histidine phosphorylation are vulnerable to ischemia/reperfusion-induced infarction and develop abnormalities in cerebellar function. Our mechanistic analysis reveals that hypoxia-induced phosphatidic acid (PA) on mitochondria is essential for mitophagy and the interaction of DRP1 with NME3. The PA binding function of MOM-localized NME3 is required for hypoxia-induced mitophagy. Further investigation demonstrates that the interaction with active NME3 prevents DRP1 susceptibility to MUL1-mediated ubiquitination, thereby allowing a sufficient amount of active DRP1 to mediate mitophagy. Furthermore, MUL1 overexpression suppresses hypoxia-induced mitophagy, which is reversed by co-expression of ubiquitin-resistant DRP1 mutant or histidine phosphorylatable NME3. Thus, the site-specific interaction with active NME3 provides DRP1 a microenvironment for stabilization to proceed the segregation process in mitophagy.


Sujet(s)
Dynamines , Mitophagie , Animaux , Souris , Dynamines/génétique , Dynamines/métabolisme , Histidine/métabolisme , Hypoxie , Mitophagie/génétique , Ubiquitination
2.
Chemistry ; 17(33): 9180-7, 2011 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-21732435

RÉSUMÉ

Five iridium bis(carbene) complexes, [Ir(pmi)(2)(pypz)] (1), [Ir(mpmi)(2)(pypz)] (2), [Ir(fpmi)(2)(pypz)] (3), [Ir(fpmi)(2)(pyim)] (4), and [Ir(fpmi)(2)(tfpypz)] (5) (pmi=1-phenyl-3-methylimdazolin-2-ylidene-C,C(2'); fpmi=1-(4-fluorophenyl)-3-methylimdazolin-2-ylidene-C,C(2'); mpmi=1-(4-methyl-phenyl)-3-methylimdazolin-2-ylidene-C,C(2'); pypz=2-(1H-pyrazol-5-yl)pyridinato; pyim=2-(1H-imidazol-2-yl)pyridinato; and tfpypz=2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridinato), were synthesized and their structures were characterized by NMR spectroscopy, mass spectroscopy and X-ray diffraction. These complexes showed phosphorescent emission with the emission maxima between 453 and 490 nm. Various spectrophotometric measurements, cyclic voltammetric studies, and density functional theory (DFT) calculations show that, unlike most of the phosphorescent cyclometalated iridium complexes, the lowest unoccupied molecular orbital (LUMO) energy and the emissive state of these iridium complexes are mainly controlled by the N,N'-heteroaromatic (N^N) ligand. Despite the fact that the LUMO levels of these complexes are mainly on the N^N ligands, the efficiencies of the electroluminescent (EL) devices are very high. For example, the EL devices using [Ir(mpmi)(2)(pypz)], [Ir(fpmi)(2)(pypz)], and [Ir(fpmi)(2)(tfpypz)] as the dopant emitters exhibited light- to deep-blue electrophosphorescence with external quantum efficiencies of 15.2, 14.1, and 7.6% and Commission Internationale d'Énclairage (x,y) coordinates (CIE(x,y)) of (0.14, 0.27), (0.14, 0.18) and (0.14, 0.10), respectively.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE