Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 150
Filtrer
1.
ACS Nano ; 18(33): 22484-22494, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39103244

RÉSUMÉ

An integrated asymmetric hydrogel electrolyte with a tailored composition and chemical structure on the cathode/anode-electrolyte interface is designed to boost the cost-effective, high-energy Zn-I2 battery. Such a configuration concurrently addresses the parasitic reactions on the Zn anode side and the polyiodide shuttle issue afflicting the cathode. Specifically, the Zn2+-cross-linked sodium alginate and carrageenan dual network (Carra-Zn-Alg) is adopted to guide the Zn2+ transport, achieving a dendrite-free morphology on the Zn surface and ensuring long-term stability. For the cathode side, the poly(vinyl alcohol)-strengthened poly(3,4-ethylenedioxythiophene)polystyrenesulfonate hydrogel (PVA-PEDOT) with high conductivity is employed to trap polyiodide and accelerate electron transfer for mitigating the shuttle effect and facilitating I2/I- redox kinetics. Attributing to the asymmetrical architecture with a customized interfacial chemistry, the optimized Zn-I2 cell exhibits a superior Coulombic efficiency of 99.84% with a negligible capacity degradation at 0.1 A g-1 and an enhanced stability of 10 000 cycles at 5 A g-1. The proposed asymmetric hydrogel provides a promising route to simultaneously resolve the distinct challenges encountered by the cathode and anode interfaces in rechargeable batteries.

2.
Surg Endosc ; 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39174707

RÉSUMÉ

BACKGROUND: Transcolonic endoscopic appendectomy (TEA) is rapidly evolving and has been reported as a minimally invasive alternative to appendectomy. We aimed to characterize the feasibility and safety of a novel unassisted single-channel TEA. METHOD: We retrospectively investigated 23 patients with appendicitis or appendiceal lesions who underwent TEA from February 2016 to December 2022. We collected clinicopathological characteristics, procedure­related parameters, and follow­up data and analyzed the impact of previous abdominal surgery and traction technique. RESULTS: The mean age was 56.0 years. Of the 23 patients with appendiceal lesions, fourteen patients underwent TEA and nine underwent traction-assisted TEA (T-TEA). Eight patients (34.8%) had previous abdominal surgery. The En bloc resection rate was 95.7%. The mean procedure duration was 91.1 ± 45.5 min, and the mean wound closure time was 29.4 ± 18.6 min. The wounds after endoscopic appendectomy were closed with clips (21.7%) or a combination of clip closure and endoloop reinforcement (78.3%), and the median number of clips was 7 (range, 3-15). Three patients (13.0%) experienced major adverse events, including two delayed perforations (laparoscopic surgery) and one infection (salvage endoscopic suture). During a median follow-up of 23 months, no residual or recurrent lesions were observed, and no recurrence of abdominal pain occurred. There were no significant differences between TEA and T-TEA groups and between patients with and without abdominal surgery groups in each factor. CONCLUSION: Unassisted single-channel TEA for patients with appendiceal lesions has favorable short- and long-term outcomes. TEA can safely and effectively treat appendiceal disease in appropriately selected cases.

3.
Immunology ; 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39022997

RÉSUMÉ

Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.

4.
Neural Netw ; 178: 106469, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38925030

RÉSUMÉ

Robot-assisted surgery is rapidly developing in the medical field, and the integration of augmented reality shows the potential to improve the operation performance of surgeons by providing more visual information. In this paper, we proposed a markerless augmented reality framework to enhance safety by avoiding intra-operative bleeding, which is a high risk caused by collision between surgical instruments and delicate blood vessels (arteries or veins). Advanced stereo reconstruction and segmentation networks are compared to find the best combination to reconstruct the intra-operative blood vessel in 3D space for registration with the pre-operative model, and the minimum distance detection between the instruments and the blood vessel is implemented. A robot-assisted lymphadenectomy is emulated on the da Vinci Research Kit in a dry lab, and ten human subjects perform this operation to explore the usability of the proposed framework. The result shows that the augmented reality framework can help the users to avoid the dangerous collision between the instruments and the delicate blood vessel while not introducing an extra load. It provides a flexible framework that integrates augmented reality into the medical robotic platform to enhance safety during surgery.


Sujet(s)
Réalité augmentée , Interventions chirurgicales robotisées , Humains , Interventions chirurgicales robotisées/méthodes , Chirurgie assistée par ordinateur/méthodes , Imagerie tridimensionnelle
5.
Angew Chem Int Ed Engl ; 63(36): e202407151, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-38860918

RÉSUMÉ

Developing large-scale monolithic perovskite/silicon tandem devices based on industrial Czochralski silicon wafers will likely have to adopt double-side textured architecture, given their optical benefits and low manufacturing costs. However, the surface engineering strategies that are widely used in solution-processed perovskites to regulate the interface properties are not directly applicable to micrometric textures. Here, we devise a surface passivation strategy by dynamic spray coating (DSC) fluorinated thiophenethylammonium ligands, combining the advantages of providing conformal coverage and suppressing phase conversion on textured surfaces. From the viewpoint of molecular engineering, theoretical calculation and experimental results demonstrate that introducing trifluoromethyl group provide more effective surface passivation through strong interaction and energy alignment by forming a dipole layer. Consequently, the DSC treatment of this bifunctional molecule enables the tandem cells based on industrial silicon wafers to achieve a certified stabilized power conversion efficiency of 30.89 %. In addition, encapsulated devices display excellent operational stability by retaining over 97 % of their initial performance after 600 h continuous illumination.

6.
Fundam Res ; 4(2): 291-299, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38933506

RÉSUMÉ

The photogenerated charge carrier separation and transportation of inside photocathodes can greatly influence the performance of photoelectrochemical (PEC) H2 production devices. Coupling TiO2 with p-type semiconductors to construct heterojunction structures is one of the most widely used strategies to facilitate charge separation and transportation. However, the band position of TiO2 could not perfectly match with all p-type semiconductors. Here, taking antimony selenide (Sb2Se3) as an example, a rational strategy was developed by introducing a viologen electron transfer mediator (ETM) containing polymeric film (poly-1,1'-dially-[4,4'-bipyridine]-1,1'-diium, denoted as PV2+) at the interface between Sb2Se3 and TiO2 to regulate the energy band alignment, which could inhibit the recombination of photogenerated charge carriers of interfaces. With Pt as a catalyst, the constructed Sb2Se3/PV2+/TiO2/Pt photocathode showed a superior PEC hydrogen generation activity with a photocurrent density of -18.6 mA cm-2 vs. a reversible hydrogen electrode (RHE) and a half-cell solar-to-hydrogen efficiency (HC-STH) of 1.54% at 0.17 V vs. RHE, which was much better than that of the related Sb2Se3/TiO2/Pt photocathode without PV2+ (-9.8 mA cm-2, 0.51% at 0.10 V vs. RHE).

7.
Fundam Res ; 4(2): 226-236, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38933510

RÉSUMÉ

According to a study from World Health Organization's Global Burden of Disease, mental and neurological disorders have accounted for 13% of global diseases in recent years and are on the rise. Neuropsychiatric conditions or neuroinflammatory disorders are linked by the presence of an exaggerated immune response both peripherally and in the central nervous system (CNS). Cognitive dysfunction (CD) encompasses a complex group of diseases and has frequently been described in the field of autoimmune diseases, especially in multiple non-CNS-related autoimmune diseases. Recent studies have provided various hypotheses regarding the occurrence of cognitive impairment in autoimmune diseases, including that abnormally activated immune cells can disrupt the integrity of the blood-brain barrier (BBB) to trigger a central neuroinflammatory response. When the BBB is intact, autoantibodies and pro-inflammatory molecules in peripheral circulation can enter the brain to activate microglia, inducing CNS inflammation and CD. However, the mechanisms explaining the association between the immune system and neural function and their contribution to diseases are uncertain. In this review, we used clinical statistics to illustrate the correlation between CD and autoimmune diseases that do not directly affect the CNS, summarized the clinical features and mechanisms by which autoimmune diseases trigger cognitive impairment, and explored existing knowledge regarding the link between CD and autoimmune diseases from the perspective of the field of neuroimmunology.

9.
Front Immunol ; 15: 1401867, 2024.
Article de Anglais | MEDLINE | ID: mdl-38846947

RÉSUMÉ

Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.


Sujet(s)
Marqueurs biologiques , Exosomes , Mycobacterium tuberculosis , Tuberculose , Exosomes/immunologie , Exosomes/métabolisme , Humains , Tuberculose/immunologie , Tuberculose/diagnostic , Tuberculose/thérapie , Tuberculose/microbiologie , Mycobacterium tuberculosis/immunologie , Animaux , Antituberculeux/usage thérapeutique
10.
Toxics ; 12(6)2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38922091

RÉSUMÉ

The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province, China. The results show that antibiotics were widely present in the sediments of the Anning River, with a total of 22 antibiotics detected. FQs were among the most abundant antibiotics, followed by TCs, MLs, APs, and SAs. The total concentrations of antibiotics in surface sediments varied from 0.05 to 53.35 ng/g, with an average of 8.09 ng/g. Among these groups, MLs, FQs, and TCs emerged as the predominant classes of antibiotics. The midstream sediments showed the highest residual levels of antibiotics, with lower levels observed in the downstream and upstream sediments. Anthropogenic activities, such as human clinical practices and animal breeding, might be sources of antibiotics released into the river. An ecological risk assessment revealed that trimethoprim from the SA group exhibited high risks, and MLs showed medium risks in the Anning River, whereas most antibiotics presented minimal to low risks. This study provides valuable information on antibiotic pollution in the upstream region of the Yangtze River, and future management measures are needed for the Anning River.

11.
Colloids Surf B Biointerfaces ; 240: 113987, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38795586

RÉSUMÉ

Residual plasmin activity in whole ultra-instantaneous UHT (UI-UHT) milk causes rapid fat rise during storage, seriously affecting consumers' purchase intentions. In this work, the molecular mechanisms underlying fat destabilization in whole UI-UHT milk by added plasmin were investigated based on the hydrolysis behavior of interfacial proteins. By using SDS-PAGE and peptidomic analysis, we found that the hydrolysis of interfacial proteins by plasmin led to a decrease in the amount and coverage of interfacial proteins and an increase in zeta-potential value, causing the flocculation and coalescence of fat globules. Moreover, the hydrolysis pattern varied in different categories of interfacial proteins by plasmin. In total, 125 peptides in all samples were identified. Plasmin tended to hydrolyze most major milk fat globule membrane (MFGM) proteins into protein fragments (>10 kDa) rather than peptides (<10 kDa). In contrast, peptides derived from caseins were more preferentially identified within a relatively short incubation time. It was the co-hydrolysis of caseins and some major MFGM proteins as anchors that destroyed the stability of MFGM. Furthermore, studies on the effect of trilayer membrane structure remaining at the interface on the hydrolysis rate of major MFGM proteins by plasmin revealed that ADPH and BTN were very sensitive to plasmin action, while PAS 7 was very resistant to plasmin action. Overall, membrane structure reduced the susceptibility of some major MFGM proteins to plasmin and provided protective effects. Therefore, this study provided important insights into the hydrolysis behavior of interfacial proteins in whole UI-UHT milk induced by plasmin.


Sujet(s)
Fibrinolysine , Glycolipides , Glycoprotéines , Gouttelettes lipidiques , Lait , Fibrinolysine/composition chimique , Fibrinolysine/métabolisme , Animaux , Glycoprotéines/composition chimique , Lait/composition chimique , Gouttelettes lipidiques/composition chimique , Gouttelettes lipidiques/métabolisme , Glycolipides/composition chimique , Hydrolyse
12.
Small ; : e2402537, 2024 May 06.
Article de Anglais | MEDLINE | ID: mdl-38711307

RÉSUMÉ

Cu-based catalysts are the most intensively studied in the field of electrocatalytic CO2 reduction reaction (CO2RR), demonstrating the capacity to yield diverse C1 and C2+ products albeit with unsatisfactory selectivity. Manipulation of the oxidation state of Cu sites during CO2RR process proves advantageous in modulating the selectivity of productions, but poses a formidable challenge. Here, an oxygen spillover strategy is proposed to enhance the oxidation state of Cu during CO2RR by incorporating the oxygen donor Sb2O4. The Cu-Sb bimetallic oxide catalyst attains a remarkable CO2-to-CO selectivity approaching unity, in stark contrast to the diverse product distribution observed with bare CuO. The exceptional Faradaic efficiency of CO can be maintained across a wide range of potential windows of ≈700 mV in 1 m KOH, and remains independent of the Cu/Sb ratio (ranging from 0.1:1 to 10:1). Correlative calculations and experimental results reveal that oxygen spillover from Sb2O4 to Cu sites maintains the relatively high valence state of Cu during CO2RR, which diminishes the binding strength of *CO, thereby achieving heightened selectivity in CO production. These findings propose the role of oxygen spillover in CO2RR over Cu-based catalysts, and shed light on the rational design of highly selective CO2 reduction catalysts.

13.
J Colloid Interface Sci ; 666: 66-75, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38583211

RÉSUMÉ

Perovskite CsPbBr3 quantum dot shows great potential in artificial photosynthesis, attributed to its outstanding optoelectronic properties. Nevertheless, its photocatalytic activity is hindered by insufficient catalytic active sites and severe charge recombination. In this work, a CsPbBr3@Ag-C3N4 ternary heterojunction photocatalyst is designed and synthesized for high-efficiency CO2 reduction. The CsPbBr3 quantum dots and Ag nanoparticles are chemically anchored on the surface of g-C3N4 sheets, forming an electron transfer tunnel from CsPbBr3 quantum dots to Ag nanoparticles via g-C3N4 sheets. The resulting CsPbBr3@Ag-C3N4 ternary photocatalyst, with spatial separation of photogenerated carriers, achieves a remarkable conversion rate of 19.49 µmol·g-1·h-1 with almost 100 % CO selectivity, a 3.13-fold enhancement in photocatalytic activity as compared to CsPbBr3 quantum dots. Density functional theory calculations reveal the rapid CO2 adsorption/activation and the decreased free energy (0.66 eV) of *COOH formation at the interface of Ag nanoparticles and g-C3N4 in contrast to the g-C3N4, leading to the excellent photocatalytic activity, while the thermodynamically favored CO desorption contributes to the high CO selectivity. This work presents an innovative strategy of constructing perovskite-based photocatalyst by modulating catalyst structure and offers profound insights for efficient CO2 conversion.

14.
Foods ; 13(8)2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38672908

RÉSUMÉ

To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-scale steam infusion heat treatment was used to process milk samples over a wide temperature of 142-157 °C for 0.116-6 s, followed by storage at 4 °C, 25 °C, and 37 °C. The results of the physicochemical properties of milk showed that the particle sizes and plasmin activities of all milk samples increased during storage at 25 °C, but age gelation only occurred in three treated samples, 147 °C/6 s, 142 °C/6 s, and 142 °C/3 s, which all had lower plasmin activities. Furthermore, the properties of formed gels were further compared and analyzed by the measures of structure and intermolecular interaction. The results showed that the gel formed in the 147 °C/6 s-treated milk with a higher C* value had a denser network structure and higher gel strength, while the 142 °C/6 s-treated milk had the highest porosity. Furthermore, disulfide bonds were the largest contributor to the gel structure, and there were significant differences in disulfide bonds, hydrophobic interaction forces, hydrogen bonds, and electrostatic force among the gels. Our results showed that the occurrence of gel was not related to the thermal load, and the different direct UHT treatments produced different age gels in the milk.

15.
Exp Gerontol ; 191: 112434, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38636571

RÉSUMÉ

BACKGROUND: Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed. METHODS: T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results. RESULTS: Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust. CONCLUSIONS: This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.


Sujet(s)
Densité osseuse , Diabète de type 1 , Étude d'association pangénomique , Analyse de randomisation mendélienne , Ostéoporose , Polymorphisme de nucléotide simple , Humains , Diabète de type 1/génétique , Diabète de type 1/complications , Ostéoporose/génétique , Densité osseuse/génétique , Facteurs de risque , Femelle , Mâle , Col du fémur/imagerie diagnostique , Prédisposition génétique à une maladie , Vertèbres lombales , Adulte d'âge moyen , Études cas-témoins , Adulte , Avant-bras
16.
Int J Colorectal Dis ; 39(1): 33, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38436757

RÉSUMÉ

OBJECTIVE: The use of goal-directed fluid therapy (GDFT) has been shown to reduce complications and improve prognosis in high-risk abdominal surgery patients. However, the utilization of pulse pressure variation (PPV) guided GDFT in laparoscopic surgery remains a subject of debate. We hypothesized that utilizing PPV guidance for GDFT would optimize short-term prognosis in elderly patients undergoing laparoscopic radical resection for colorectal cancer compared to conventional fluid therapy. METHODS: Elderly patients undergoing laparoscopic radical resection of colorectal cancer were randomized to receive either PPV guided GDFT or conventional fluid therapy and explore whether PPV guided GDFT can optimize the short-term prognosis of elderly patients undergoing laparoscopic radical resection of colorectal cancer compared with conventional fluid therapy. RESULTS: The incidence of complications was significantly lower in the PPV group compared to the control group (32.8% vs. 57.1%, P = .009). Additionally, the PPV group had a lower occurrence of gastrointestinal dysfunction (19.0% vs. 39.3%, P = .017) and postoperative pneumonia (8.6% vs. 23.2%, P = .033) than the control group. CONCLUSION: Utilizing PPV as a monitoring index for GDFT can improve short-term prognosis in elderly patients undergoing laparoscopic radical resection of colorectal cancer. REGISTRATION NUMBER: ChiCTR2300067361; date of registration: January 5, 2023.


Sujet(s)
Tumeurs colorectales , Laparoscopie , Sujet âgé , Humains , Pression sanguine , Objectifs , Complications postopératoires/étiologie , Complications postopératoires/prévention et contrôle , Laparoscopie/effets indésirables , Traitement par apport liquidien , Tumeurs colorectales/chirurgie
17.
J Dairy Sci ; 107(8): 5460-5472, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38554824

RÉSUMÉ

Ultra-instantaneous UHT (UI-UHT, >155°C, <0.1 s) treated milk exhibits higher retention of active protein than regular UHT milk. However, UI-UHT products demonstrate increased susceptibility to destabilization during storage. This study aimed at monitoring the destabilizing process of UI-UHT milk across different storage temperatures and uncovering its potential mechanisms. Compared with regular UHT treatment, ultra-instantaneous treatment markedly accelerated the milk's destabilization process. Aged gel formation occurred after 45 d of storage at 25°C, whereas creaming and sedimentation were observed after 15 d at 37°C. To elucidate the instability mechanism, measurements of plasmin activity, protein hydrolysis levels, and proteomics of the aged gel were conducted. In UI-UHT milk, plasmin activity, and protein hydrolysis levels significantly increased during storage. Excessive protein hydrolysis at 37°C resulted in sedimentation, whereas moderate hydrolysis and an increase in protein particle size at 25°C resulted in aged gel formation. Proteomics analysis results indicated that the aged gel from UI-UHT milk contained intact caseins, major whey proteins, and their derived peptides. Furthermore, specific whey proteins including albumin, lactotransferrin, enterotoxin-binding glycoprotein PP20K, and MFGM proteins were identified in the gel. Additionally, MFGM proteins in UI-UHT milk experienced considerable hydrolysis during storage, contributing to fat instability. This study lays a theoretical foundation for optimizing UI-UHT milk storage conditions to enhance the quality of liquid milk products.


Sujet(s)
Lait , Animaux , Lait/composition chimique , Température , Protéines de lait/analyse , Stockage des aliments , Protéines de lactosérum
18.
Dev Comp Immunol ; 157: 105169, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38522714

RÉSUMÉ

Janus kinases (JAKs) are important components of the JAK-STAT signaling pathway and play vital roles in innate immunity, autoimmune diseases, and inflammation. However, information about JAKs remains largely unknown in the spotted seabass, a fish species of Perciformes with great commercial value in the aquaculture industry. The aims of this study are to obtain the complete cDNA sequences of JAKs (JAK1, JAK2A, JAK2B, JAK3 and TYK2) from spotted seabass and to investigate their roles upon stimulation with lipopolysaccharides (LPS) and Edwardsiella tarda, using RT-PCR, PCR and qRT-PCR methods. All five JAK genes from the spotted seabass, each encode more than 1100 amino acids residues. JAK1 and JAK3 consist of 24 exons and 23 introns, whereas JAK2A, JAK2B and TYK2 consist of 23 exons and 22 introns. Furthermore, these five spotted seabass JAKs share high sequence identities with those of other fish species in protein domain analysis, synteny analysis, and phylogenetic analysis. Moreover, these five JAK genes were ubiquitously expressed in all tissues examined from healthy fish, and inducible expressions of JAKs were observed in the intestine, gill, head kidney, and spleen following LPS treatment or E. tarda infection. These findings indicate that all these JAK genes are involved in the antibacterial immunity of the spotted seabass and provide a basis for further understanding the mechanism of JAKs antibacterial response in the spotted sea bass.


Sujet(s)
Serran , Clonage moléculaire , Protéines de poisson , Janus kinases , Lipopolysaccharides , Phylogenèse , Animaux , Protéines de poisson/génétique , Protéines de poisson/métabolisme , Serran/génétique , Serran/immunologie , Lipopolysaccharides/immunologie , Janus kinases/métabolisme , Janus kinases/génétique , Edwardsiella tarda/physiologie , Immunité innée/génétique , Maladies des poissons/immunologie , Infections à Enterobacteriaceae/immunologie , Infections à Enterobacteriaceae/médecine vétérinaire , Séquence d'acides aminés
19.
Research (Wash D C) ; 7: 0338, 2024.
Article de Anglais | MEDLINE | ID: mdl-38464498

RÉSUMÉ

Somatic cell reprogramming generates induced pluripotent stem cells (iPSCs), which serve as a crucial source of seed cells for personalized disease modeling and treatment in regenerative medicine. However, the process of reprogramming often causes substantial lineage manipulations, thereby increasing cellular heterogeneity. As a consequence, the process of harvesting monoclonal iPSCs is labor-intensive and leads to decreased reproducibility. Here, we report the first in-house developed robotic platform that uses a pin-tip-based micro-structure to manipulate radial shear flow for automated monoclonal iPSC colony selection (~1 s) in a non-invasive and label-free manner, which includes tasks for somatic cell reprogramming culturing, medium changes; time-lapse-based high-content imaging; and iPSCs monoclonal colony detection, selection, and expansion. Throughput-wise, this automated robotic system can perform approximately 24 somatic cell reprogramming tasks within 50 days in parallel via a scheduling program. Moreover, thanks to a dual flow-based iPSC selection process, the purity of iPSCs was enhanced, while simultaneously eliminating the need for single-cell subcloning. These iPSCs generated via the dual processing robotic approach demonstrated a purity 3.7 times greater than that of the conventional manual methods. In addition, the automatically produced human iPSCs exhibited typical pluripotent transcriptional profiles, differentiation potential, and karyotypes. In conclusion, this robotic method could offer a promising solution for the automated isolation or purification of lineage-specific cells derived from iPSCs, thereby accelerating the development of personalized medicines.

20.
Front Pharmacol ; 15: 1327502, 2024.
Article de Anglais | MEDLINE | ID: mdl-38414732

RÉSUMÉ

Platinum-based antitumor drugs are broad-spectrum agents with unique mechanisms of action. Combination chemotherapy regimens based on platinum drugs are commonly used in cancer treatment. However, these drugs can cause various adverse reactions in the human body through different routes of administration, including reproductive toxicity, genetic toxicity, and embryonic developmental toxicity. Preventing adverse effects is crucial to enhance patients' quality of life and reduce healthcare costs. This article discusses the types and developmental history of antitumor active platinum compounds, their mechanisms of action, routes of administration, and their potential reproductive, genetic, and embryonic developmental toxicity. This text explores preventive measures based on animal experimental results. Its aim is to provide references for personalized treatment and occupational protection when using platinum drugs. The continuous progress of science and technology, along with the deepening of medical research, suggests that the application of platinum drugs will broaden. Therefore, the development of new platinum drugs will be an important direction for future research.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE