Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 42
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Chem Theory Comput ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38949625

RÉSUMÉ

Photoinduced nonadiabatic processes play a crucial role in a wide range of disciplines, from fundamental steps in biology to modern applications in advanced materials science. A theoretical understanding of these processes is highly desirable, and trajectory surface hopping (TSH) has proven to be a well-suited framework for a wide range of systems. In this work, we present a comprehensive comparison between two TSH algorithms, the conventional Tully's fewest switches surface hopping (FSSH) scheme and the Landau-Zener surface hopping (LZSH), to study the photoinduced ring-opening of 1,3-cyclohexadiene (CHD) to 1,3,5-hexatriene at the spin-flip time-dependent density functional theory (SF-TDDFT) level of theory. Additionally, we compare our results with a literature study at the extended multistate complete active space second-order perturbation theory method (XMS-CASPT2) level of theory. Our results show that the average population and lifetimes estimated with LZSH using SF-TDDFT are closer to the literature (using multireference methods) than those estimated with FSSH using SF-TDDFT. The latter speaks in favor of applying LZSH in combination with the SF-TDDFT method to study larger and more complex systems such as molecular photoswitches where the CHD molecule acts as a backbone. In addition, we present an implementation of Tully's FSSH algorithm as an extension to the PySurf software package.

2.
Chemphyschem ; : e202400162, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38649320

RÉSUMÉ

Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. In the past few years, crystal structures of ion channels have become accessible and, when combined with mutagenesis data, have aided in the discovery of drugs that can modulate ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block the ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.

3.
Biochemistry ; 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38324395

RÉSUMÉ

Renewed scientific interest in psychedelic compounds represents one of the most promising avenues for addressing the current burden of mental health disorders. Classic psychedelics are a group of compounds that exhibit structural similarities to the naturally occurring neurotransmitter serotonin (5-HT). Acting on the 5-HT type 2A receptors (HT2ARs), psychedelics induce enduring neurophysiological changes that parallel their therapeutic psychological and behavioral effects. Recent preclinical evidence suggests that the ability of psychedelics to exert their action is determined by their ability to permeate the neuronal membrane to target a pool of intracellular 5-HT2ARs. In this computational study, we employ classical molecular dynamics simulations and umbrella sampling techniques to investigate the permeation behavior of 12 selected tryptamines and to characterize the interactions that drive the process. We aim at elucidating the impact of N-alkylation, indole ring substitution and positional modifications, and protonation on their membrane permeability. Dimethylation of the primary amine group and the introduction of a methoxy group at position 5 exhibited an increase in permeability. Moreover, there is a significant influence of positional substitutions on the indole groups, and the protonation of the molecules substantially increases the energy barrier at the center of the bilayer, making the compounds highly impermeable. All the information extracted from the trends predicted by the simulations can be applied in future drug design projects to develop psychedelics with enhanced activity.

4.
Chem Commun (Camb) ; 59(98): 14579-14582, 2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-37990542

RÉSUMÉ

The isotopically chiral molecular ion CHDBrI+ is identified as an exceptionally promising candidate for the detection of parity violation in vibrational transitions. The largest predicted parity-violating frequency shift reaches 1.8 Hz for the hydrogen wagging mode which has a sub-Hz natural line width and its vibrational frequency auspiciously lies in the available laser range. In stark contrast to this result, the parent neutral molecule is two orders of magnitude less sensitive to parity violation. The origin of this effect is analyzed and explained. Precision vibrational spectroscopy of CHDBrI+ is feasible as it is amenable to preparation at internally low temperatures and resistant to predissociation, promoting long interrogation times (Landau et al., J. Chem. Phys., 2023, 159, 114307). The intersection of these properties in this molecular ion places the first observation of parity violation in chiral molecules within reach.

5.
J Phys Chem A ; 127(40): 8427-8436, 2023 Oct 12.
Article de Anglais | MEDLINE | ID: mdl-37782887

RÉSUMÉ

Photoinduced processes play a crucial role in a multitude of important molecular phenomena. Accurately modeling these processes in an environment other than a vacuum requires a detailed description of the electronic states involved as well as how energy flows are coupled to the surroundings. Nonadiabatic effects must also be included in order to describe the exchange of energy between electronic and nuclear degrees of freedom correctly. In this work, we revisit the ring-opening reaction 1,3-cylohexadiene (CHD) in a solvent environment. Using our newly developed Interface for Non-Adiabatic Quantum mechanics/molecular mechanics in Solvent (INAQS) we trace the evolution of the reaction via hybrid quantum mechanics/molecular mechanics (QM/MM) surface hopping with a focus on the solvent's participation in the nonadiabatic relaxation process and the long-time approach to equilibrium. We explicitly include the MM solvent contribution to the nonadiabatic coupling vector─enabling an accurate approach to equilibrium at long times─and find that in highly multidimensional systems gradients can have little or nothing to do with the nonadiabatic couplings.

6.
J Chem Phys ; 159(11)2023 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-37724734

RÉSUMÉ

Parity non-conservation (PNC) due to the weak interaction is predicted to give rise to enantiomer dependent vibrational constants in chiral molecules, but the phenomenon has so far eluded experimental observation. The enhanced sensitivity of molecules to physics beyond the Standard Model (BSM) has led to substantial advances in molecular precision spectroscopy, and these may be applied to PNC searches as well. Specifically, trapped molecular ion experiments leverage the universality of trapping charged particles to optimize the molecular ion species studied toward BSM searches, but in searches for PNC, only a few chiral molecular ion candidates have been proposed so far. Importantly, viable candidates need to be internally cold, and their internal state populations should be detectable with high quantum efficiency. To this end, we focus on molecular ions that can be created by near threshold resonant two-photon ionization and detected via state-selective photo-dissociation. Such candidates need to be stable in both charged and neutral chiral versions to be amenable to these methods. Here, we present a collection of suitable chiral molecular ion candidates we have found, including CHDBrI+ and CHCaBrI+, that fulfill these conditions according to our ab initio calculations. We find that organo-metallic species have low ionization energy as neutrals and relatively high dissociation thresholds. Finally, we compute the magnitude of the PNC values for vibrational transitions for some of these candidates. An experimental demonstration of state preparation and readout for these candidates will be an important milestone toward measuring PNC in chiral molecules for the first time.

7.
Mol Phys ; 121(9-10)2023.
Article de Anglais | MEDLINE | ID: mdl-37470065

RÉSUMÉ

We present a new software package called M-Chem that is designed from scratch in C++ and parallelized on shared-memory multi-core architectures to facilitate efficient molecular simulations. Currently, M-Chem is a fast molecular dynamics (MD) engine that supports the evaluation of energies and forces from two-body to many-body all-atom potentials, reactive force fields, coarse-grained models, combined quantum mechanics molecular mechanics (QM/MM) models, and external force drivers from machine learning, augmented by algorithms that are focused on gains in computational simulation times. M-Chem also includes a range of standard simulation capabilities including thermostats, barostats, multi-timestepping, and periodic cells, as well as newer methods such as fast extended Lagrangians and high quality electrostatic potential generation. At present M-Chem is a developer friendly environment in which we encourage new software contributors from diverse fields to build their algorithms, models, and methods in our modular framework. The long-term objective of M-Chem is to create an interdisciplinary platform for computational methods with applications ranging from biomolecular simulations, reactive chemistry, to materials research.

8.
J Am Chem Soc ; 145(24): 13204-13214, 2023 06 21.
Article de Anglais | MEDLINE | ID: mdl-37294056

RÉSUMÉ

We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (MPro) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit MPro. Two other compounds, X77A and X77C, were designed computationally in this work. They were derived from the structure of X77, a non-covalent inhibitor forming a tight surface complex with MPro. We modified the X77 structure by introducing warheads capable of reacting with the catalytic cysteine residue in the MPro active site. The reaction mechanisms of the four molecules with MPro were investigated by quantum mechanics/molecular mechanics (QM/MM) simulations. The results show that all four compounds form covalent adducts with the catalytic cysteine Cys 145 of MPro. From the chemical perspective, the reactions of these four molecules with MPro follow three distinct mechanisms. The reactions are initiated by a nucleophilic attack of the thiolate group of the deprotonated cysteine residue from the catalytic dyad Cys145-His41 of MPro. In the case of carmofur and X77A, the covalent binding of the thiolate to the ligand is accompanied by the formation of the fluoro-uracil leaving group. The reaction with X77C follows the nucleophilic aromatic substitution SNAr mechanism. The reaction of MPro with nirmatrelvir (which has a reactive nitrile group) leads to the formation of a covalent thioimidate adduct with the thiolate of the Cys145 residue in the enzyme active site. Our results contribute to the ongoing search for efficient inhibitors of the SARS-CoV-2 enzymes.


Sujet(s)
COVID-19 , SARS-CoV-2 , Humains , Cystéine , Simulation de dynamique moléculaire , Inhibiteurs de protéases/pharmacologie , Inhibiteurs de protéases/composition chimique , Antiviraux/pharmacologie , Simulation de docking moléculaire
9.
Phys Chem Chem Phys ; 25(12): 8331-8335, 2023 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-36883995

RÉSUMÉ

The activity of ion channels can be reversibly photo-controlled via the binding of molecular photoswitches, often based on an azobenzene scaffold. Those azobenzene derivatives interact with aromatic residues of the protein via stacking interactions. In the present work, the effect of face-to-face and t-shaped stacking interactions on the excited state electronic structure of azobenzene and p-diaminoazobenzene integrated into the NaV1.4 channel is computationally investigated. The formation of a charge transfer state, caused by electron transfer from the protein to the photoswitches, is observed. This state is strongly red shifted when the interaction takes place in a face-to-face orientation and electron donating groups are present on the aromatic ring of the amino acids. The low-energy charge transfer state can interfere with the photoisomerization process after excitation to the bright state by leading to the formation of radical species.

10.
Nat Commun ; 13(1): 5765, 2022 09 30.
Article de Anglais | MEDLINE | ID: mdl-36180434

RÉSUMÉ

Photoactuators and photoluminescent dyes utilize light to perform mechanical motion and undergo spontaneous radiation emission, respectively. Combining these two functionalities in a single molecule would benefit the construction of advanced molecular machines. Due to the possible detrimental interaction between the two light-dependent functional parts, the design of hybrid systems featuring both functions in parallel remains highly challenging. Here, we develop a light-driven rotary molecular motor with an efficient photoluminescent dye chemically attached to the motor, not compromising its motor function. This molecular system shows efficient rotary motion and bright photoluminescence, and these functions can be addressed by a proper choice of excitation wavelengths and solvents. The moderate interaction between the two parts generates synergistic effects, which are beneficial for lower-energy excitation and chirality transfer from the motor to the photoluminescent dye. Our results provide prospects towards photoactive multifunctional systems capable of carrying out molecular rotary motion and tracking its location in a complex environment.


Sujet(s)
Agents colorants , Nanotechnologie , Déplacement , Solvants
11.
J Chem Theory Comput ; 18(8): 5056-5067, 2022 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-35797455

RÉSUMÉ

This work explores the level of transparency in reporting the details of computational protocols that is required for practical reproducibility of quantum mechanics/molecular mechanics (QM/MM) simulations. Using the reaction of an essential SARS-CoV-2 enzyme (the main protease) with a covalent inhibitor (carmofur) as a test case of chemical reactions in biomolecules, we carried out QM/MM calculations to determine the structures and energies of the reactants, the product, and the transition state/intermediate using analogous QM/MM models implemented in two software packages, NWChem and Q-Chem. Our main benchmarking goal was to reproduce the key energetics computed with the two packages. Our results indicate that quantitative agreement (within the numerical thresholds used in calculations) is difficult to achieve. We show that rather minor details of QM/MM simulations must be reported in order to ensure the reproducibility of the results and offer suggestions toward developing practical guidelines for reporting the results of biosimulations.


Sujet(s)
COVID-19 , Théorie quantique , Protéases 3C des coronavirus , Fluorouracil/analogues et dérivés , Humains , Reproductibilité des résultats , SARS-CoV-2
12.
J Chem Theory Comput ; 18(8): 4601-4614, 2022 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-35901266

RÉSUMÉ

The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.


Sujet(s)
Simulation de dynamique moléculaire , Théorie quantique , Logiciel
13.
Phys Chem Chem Phys ; 24(19): 11592-11602, 2022 May 18.
Article de Anglais | MEDLINE | ID: mdl-35531648

RÉSUMÉ

Dithienylethene (DTE) molecular photoswitches have shown to be excellent candidates in the design of efficient optoelectronic devices, due to their high photoisomerization quantum yield (QY), for which symmetry is suggested to play a crucial role. Here, we present a theoretical study on the photochemistry of a non-symmetric dithienylethene photoswitch, with a special emphasis on the effect of asymmetric substitution on the photocyclization and photoreversion mechanisms. We used the Spin-Flip Time Dependent Density Functional Theory (SF-TDDFT) method to locate and characterize the main structures (conical intersections and minima) of the ground state and the first two excited states, S1 and S2, along the ring-opening/closure reaction coordinate of the photocyclization and photoreversion processes, and to identify the important coordinates governing the radiationless decay pathways. Our results suggest that while the main features that characterize the photoisomerization of symmetric DTEs are also present for the photoisomerization of the non-symmetric DTE, the lower energy barrier on S1 along the cycloreversion reaction speaks in favor of a more efficient and therefore a higher cycloreversion QY for the non-symmetric DTEs, making them a better candidate for molecular optoelectronic devices than their symmetric counterparts.

14.
Phys Chem Chem Phys ; 24(13): 7815-7825, 2022 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-35297440

RÉSUMÉ

We present experimental evidence for soft X-ray induced intramolecular hydrogen transfer in the protonated synthetic tri-oligonucleotide d(FUAG) in the gas-phase (FU: fluorouracil). The trinucleotide cations were stored in a cryogenic ion trap and exposed to monochromatic synchrotron radiation. Photoionization and photofragmentation product ion yields were recorded as a function of photon energy. Predominanly glycosidic bond cleavage leading to formation of nucleobase-related fragments is observed. In most cases, glycosidic bond cleavage is accompanied by single or double hydrogen transfer. The combination of absorption-site-sensitive soft X-ray spectroscopy with fragment specific mass spectrometry allows to directly relate X-ray absorption site and fragmentation site. We observe pronounced resonant features in the competition between single and double hydrogen transfer towards nucleobases. A direct comparison of experimental data with time-dependent density functional theory calculations, using short range corrected hybrid functionals, reveal that these hydrogen transfer processes are universal and not limited to population of particular excited states localized at the nucleobases. Instead, hydrogen transfer can occur upon X-ray absorption in any nucleobase and in the DNA backbone. Resonances seem to occur because of site-selective suppression of hydrogen transfer channels. Furthermore, non-covalent interactions of the optimized ground state geometries were investigated to identify intramolecular hydrogen bonds along which hydrogen transfer is most likely.


Sujet(s)
ADN , Hydrogène , Cations/composition chimique , ADN/composition chimique , Liaison hydrogène , Spectrométrie de masse
15.
J Chem Theory Comput ; 17(12): 7873-7885, 2021 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-34609876

RÉSUMÉ

As molecular dynamics simulations increase in complexity, new analysis tools are necessary to facilitate interpreting the results. Lipids, for instance, are known to form many complicated morphologies, because of their amphipathic nature, becoming more intricate as the particle count increases. A few lipids might form a micelle, where aggregation of tens of thousands could lead to vesicle formation. Millions of lipids comprise a cell and its organelle membranes, and are involved in processes such as neurotransmission and transfection. To study such phenomena, it is useful to have analysis tools that understand what is meant by emerging entities such as micelles and vesicles. Studying such systems at the particle level only becomes extremely tedious, counterintuitive, and computationally expensive. To address this issue, we developed a method to track all the individual lipid leaflets, allowing for easy and quick detection of topological changes at the mesoscale. By using a voxel-based approach and focusing on locality, we forego costly geometrical operations without losing important details and chronologically identify the lipid segments using the Jaccard index. Thus, we achieve a consistent sequential segmentation on a wide variety of (lipid) systems, including monolayers, bilayers, vesicles, inverted hexagonal phases, up to the membranes of a full mitochondrion. It also discriminates between adhesion and fusion of leaflets. We show that our method produces consistent results without the need for prefitting parameters, and segmentation of millions of particles can be achieved on a desktop machine.

16.
J Chem Theory Comput ; 17(8): 4946-4960, 2021 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-34251194

RÉSUMÉ

The quality of molecular dynamics simulations strongly depends on the accuracy of the underlying force fields (FFs) that determine all intra- and intermolecular interactions of the system. Commonly, transferable FF parameters are determined based on a representative set of small molecules. However, such an approach sacrifices accuracy in favor of generality. In this work, an open-source and automated toolkit named Q-Force is presented, which augments these transferable FFs with molecule-specific bonded parameters and atomic charges that are derived from quantum mechanical (QM) calculations. The molecular fragmentation procedure allows treatment of large molecules (>200 atoms) with a low computational cost. The generated Q-Force FFs can be used at the same computational cost as transferable FFs, but with improved accuracy: We demonstrate this for the vibrational properties on a set of small molecules and for the potential energy surface on a complex molecule (186 atoms) with photovoltaic applications. Overall, the accuracy, user-friendliness, and minimal computational overhead of the Q-Force protocol make it widely applicable for atomistic molecular dynamics simulations.

17.
Phys Chem Chem Phys ; 23(20): 11900-11906, 2021 May 26.
Article de Anglais | MEDLINE | ID: mdl-33997879

RÉSUMÉ

The conformation and the electronic structure of gas-phase oligonucleotides depends strongly on the protonation site. 5'-d(FUAG) can either be protonated at the A-N1 or at the G-N7 position. We have stored protonated 5'-d(FUAG) cations in a cryogenic ion trap held at about 20 K. To identify the protonation site and the corresponding electronic structure, we have employed soft X-ray absorption spectroscopy at the nitrogen K-edge. The obtained spectra were interpreted by comparison to time-dependent density functional theory calculations using a short-range exchange correlation functional. Despite the fact that guanine has a significantly higher proton affinity than adenine, the agreement between experiment and theory is better for the A-N1 protonated system. Furthermore, an inverse site sensitivity is observed in which the yield of the nucleobase fragments that contain the absorption site appears substantially reduced, which could be explained by non-statistical fragmentation processes, localized on the photoabsorbing nucleobase.


Sujet(s)
ADN/composition chimique , Électrons , Conformation d'acide nucléique , Protons , Spectroscopie d'absorption X
18.
Phys Chem Chem Phys ; 23(26): 14164-14177, 2021 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-33988190

RÉSUMÉ

Singlet fission (SF), a multiexciton generation process, has been proposed as an alternative to enhance the performance of solar cells. The gas phase dimer model has shown its utility to study this process, but it does not always cover all the physics and the effect of the surrounding atoms has to be included in such cases. In this contribution, we explore the influence of crystal packing on the electronic couplings, and on the so-called exciton descriptors and electron-hole correlation plots. We have studied three tetracene dimers extracted from the crystal structure, as well as several dimers and trimers of the α and ß polymorphs of 1,3-diphenylisobenzofuran (DPBF). These polymorphs show different SF yields. Our results highlight that the character of the excited states of tetracene depends on both the mutual disposition of molecules and inclusion of the environment. The latter does however not change significantly the interpretation of the SF mechanism in the studied systems. For DPBF, we establish how the excited state analysis is able to pinpoint differences between the polymorphs. We observe strongly bound correlated excitons in the ß polymorph which might hinder the formation of the 1TT state and, consequently, explain its low SF yield.

19.
J Phys Chem B ; 125(9): 2231-2240, 2021 03 11.
Article de Anglais | MEDLINE | ID: mdl-33626280

RÉSUMÉ

Infrared fluorescent proteins (iRFPs) are potential candidates for deep-tissue in vivo imaging. Here, we provide molecular-level insights into the role of the protein environment in the structural stability of the chromophore within the protein binding pocket through the flexible hydrogen-bonding network using molecular dynamics simulation. Furthermore, we present systematic excited-state analysis to characterize the nature of the first two excited states and the role of the environment in shaping the nature of the chromophore's excited states within the hybrid quantum mechanics/molecular mechanics framework. Our results reveal that the environment red-shifts the absorption of the chromophore by about 0.32 eV compared to the isolated counterpart, and besides the structural stability, the protein environment does not alter the nature of the excited state of the chromophore significantly. Our study contributes to the fundamental understanding of the excited-state processes of iRFPs in a complex environment and provides a design principle for developing iRFPs with desired spectral properties.


Sujet(s)
Simulation de dynamique moléculaire , Théorie quantique , Protéines à fluorescence verte , Liaison hydrogène , Protéines luminescentes , Structures macromoléculaires
20.
Phys Chem Chem Phys ; 23(5): 3552-3564, 2021 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-33514952

RÉSUMÉ

The activity of voltage-gated ion channels can be controlled by the binding of photoswitches inside their internal cavity and subsequent light irradiation. We investigated the binding of azobenzene and p-diaminoazobenzene to the human Nav1.4 channel in the inactivated state by means of Gaussian accelerated molecular dynamics simulations and free-energy computations. Three stable binding pockets were identified for each of the two photoswitches. In all the cases, the binding is controlled by the balance between the favorable hydrophobic interactions of the ligands with the nonpolar residues of the protein and the unfavorable polar solvation energy. In addition, electrostatic interactions between the ligand and the polar aminoacids are also relevant for p-diaminoazobenzene due to the presence of the amino groups on the benzene moieties. These groups participate in hydrogen bonding in the most favorable binding pocket and in long-range electrostatic interactions in the other pockets. The thermodinamically preferred binding sites found for both photoswitches are close to the selectivity filter of the channel. Therefore, it is very likely that the binding of these ligands will induce alterations in the ion conduction through the channel.


Sujet(s)
Composés azoïques/métabolisme , Canal sodique voltage-dépendant NAV1.4/métabolisme , 4-Phényldiazényl-aniline/analogues et dérivés , Composés azoïques/composition chimique , Sites de fixation , Humains , Liaison hydrogène , Simulation de dynamique moléculaire , Canal sodique voltage-dépendant NAV1.4/composition chimique , Liaison aux protéines , Électricité statique , Thermodynamique , 4-Phényldiazényl-aniline/composition chimique , 4-Phényldiazényl-aniline/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...