Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PNAS Nexus ; 1(2): pgac067, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-36713328

RÉSUMÉ

The new variant of concern (VOC) of SARS-CoV-2, Omicron (B.1.1.529), is genetically very different from other VOCs. We compared Omicron with the preceding VOC Delta (B.1.617.2) and the wildtype (wt) strain (B.1) with respect to their interactions with the antiviral interferon (IFN-alpha/beta) response in infected cells. Our data indicate that IFN induction by Omicron is low and comparable to the wt, whereas Delta showed an increased IFN induction. However, Omicron exceeded both the wt and the Delta strain with respect to the ability to withstand the antiviral state imposed by IFN-alpha.

2.
Sci Adv ; 7(27)2021 06.
Article de Anglais | MEDLINE | ID: mdl-34193418

RÉSUMÉ

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the rapid development of new therapies against coronavirus disease 2019 (COVID-19) infection. Here, we present the identification of 200 approved drugs, appropriate for repurposing against COVID-19. We constructed a SARS-CoV-2-induced protein network, based on disease signatures defined by COVID-19 multiomics datasets, and cross-examined these pathways against approved drugs. This analysis identified 200 drugs predicted to target SARS-CoV-2-induced pathways, 40 of which are already in COVID-19 clinical trials, testifying to the validity of the approach. Using artificial neural network analysis, we classified these 200 drugs into nine distinct pathways, within two overarching mechanisms of action (MoAs): viral replication (126) and immune response (74). Two drugs (proguanil and sulfasalazine) implicated in viral replication were shown to inhibit replication in cell assays. This unbiased and validated analysis opens new avenues for the rapid repurposing of approved drugs into clinical trials.


Sujet(s)
Repositionnement des médicaments , SARS-CoV-2/physiologie , Antiviraux/métabolisme , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , COVID-19/anatomopathologie , COVID-19/virologie , Humains , 29935 , Proguanil/pharmacologie , Proguanil/usage thérapeutique , SARS-CoV-2/immunologie , SARS-CoV-2/isolement et purification , Sulfasalazine/pharmacologie , Réplication virale/effets des médicaments et des substances chimiques , Traitements médicamenteux de la COVID-19
3.
J Biol Chem ; 295(41): 13958-13964, 2020 10 09.
Article de Anglais | MEDLINE | ID: mdl-32587093

RÉSUMÉ

The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the devastating COVID-19 lung disease pandemic. Here, we tested the inhibitory activities of the antiviral interferons of type I (IFN-α) and type III (IFN-λ) against SARS-CoV-2 and compared them with those against SARS-CoV-1, which emerged in 2003. Using two mammalian epithelial cell lines (human Calu-3 and simian Vero E6), we found that both IFNs dose-dependently inhibit SARS-CoV-2. In contrast, SARS-CoV-1 was restricted only by IFN-α in these cell lines. SARS-CoV-2 generally exhibited a broader IFN sensitivity than SARS-CoV-1. Moreover, ruxolitinib, an inhibitor of IFN-triggered Janus kinase/signal transducer and activator of transcription signaling, boosted SARS-CoV-2 replication in the IFN-competent Calu-3 cells. We conclude that SARS-CoV-2 is sensitive to exogenously added IFNs. This finding suggests that type I and especially the less adverse effect-prone type III IFN are good candidates for the management of COVID-19.


Sujet(s)
Antiviraux/pharmacologie , Betacoronavirus/effets des médicaments et des substances chimiques , Interféron de type I/pharmacologie , Interférons/pharmacologie , Animaux , Betacoronavirus/isolement et purification , Betacoronavirus/physiologie , COVID-19 , Lignée cellulaire , Chlorocebus aethiops , Infections à coronavirus/anatomopathologie , Infections à coronavirus/virologie , Humains , Janus kinases/métabolisme , Nitriles , Pandémies , Pneumopathie virale/anatomopathologie , Pneumopathie virale/virologie , Pyrazoles/pharmacologie , Pyrimidines , Virus du SRAS/effets des médicaments et des substances chimiques , Virus du SRAS/physiologie , SARS-CoV-2 , Transduction du signal/effets des médicaments et des substances chimiques , Cellules Vero , Réplication virale/effets des médicaments et des substances chimiques , Interféron lambda
4.
Cell Host Microbe ; 17(3): 309-319, 2015 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-25704008

RÉSUMÉ

The cytoplasmic RNA helicase RIG-I mediates innate sensing of RNA viruses. The genomes of influenza A virus (FLUAV) are encapsidated by the nucleoprotein and associated with RNA polymerase, posing potential barriers to RIG-I sensing. We show that RIG-I recognizes the 5'-triphosphorylated dsRNA on FLUAV nucleocapsids but that polymorphisms at position 627 of the viral polymerase subunit PB2 modulate RIG-I sensing. Compared to mammalian-adapted PB2-627K, avian FLUAV nucleocapsids possessing PB2-627E are prone to increased RIG-I recognition, and RIG-I-deficiency partially restores PB2-627E virus infection of mammalian cells. Heightened RIG-I sensing of PB2-627E nucleocapsids correlates with previously established lower affinity of 627E-containing PB2 for nucleoprotein and is increased by further nucleocapsid instability. The effect of RIG-I on PB2-627E nucleocapsids is independent of antiviral signaling, suggesting that RIG-I-nucleocapsid binding alone can inhibit infection. These results indicate that RIG-I is a direct avian FLUAV restriction factor and highlight nucleocapsid disruption as an antiviral strategy.


Sujet(s)
DEAD-box RNA helicases/métabolisme , Interactions hôte-pathogène , Virus de la grippe A/immunologie , Nucléocapside/immunologie , RNA replicase/génétique , RNA replicase/métabolisme , Protéines virales/génétique , Protéines virales/métabolisme , Animaux , Lignée cellulaire , Protéine-58 à domaine DEAD , Humains , Virus de la grippe A/génétique , Virus de la grippe A/physiologie , Protéines mutantes/génétique , Protéines mutantes/métabolisme , Nucléocapside/génétique , Nucléocapside/physiologie , Orthomyxoviridae , Liaison aux protéines , ARN double brin/métabolisme , ARN viral/métabolisme , Récepteurs immunologiques , Réplication virale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE