Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Environ Sci Technol ; 56(12): 7800-7809, 2022 06 21.
Article de Anglais | MEDLINE | ID: mdl-35579339

RÉSUMÉ

Coastal reintroduction sites for California condors (Gymnogyps californianus) can lead to elevated halogenated organic compound (HOC) exposure and potential health impacts due to the consumption of scavenged marine mammals. Using nontargeted analysis based on comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS), we compared HOC profiles of plasma from inland and coastal scavenging California condors from the state of California (CA), and marine mammal blubber from CA and the Gulf of California off Baja California (BC), Mexico. We detected more HOCs in coastal condors (32 ± 5, mean number of HOCs ± SD, n = 7) than in inland condors (8 ± 1, n = 10) and in CA marine mammals (136 ± 87, n = 25) than in BC marine mammals (55 ± 46, n = 8). ∑DDT-related compounds, ∑PCBs, and total tris(chlorophenyl)methane (∑TCPM) were, respectively, ∼7, ∼3.5, and ∼148 times more abundant in CA than in BC marine mammals. The endocrine-disrupting potential of selected polychlorinated biphenyls (PCB) congeners, TCPM, and TCPMOH was determined by in vitro California condor estrogen receptor (ER) activation. The higher levels of HOCs in coastal condors compared to those in inland condors and lower levels of HOC contamination in Baja California marine mammals compared to those from the state of California are factors to consider in condor reintroduction efforts.


Sujet(s)
Perturbateurs endocriniens , Polychlorobiphényles , Animaux , Oiseaux , Mammifères , Mexique
2.
Gen Comp Endocrinol ; 289: 113392, 2020 04 01.
Article de Anglais | MEDLINE | ID: mdl-31926130

RÉSUMÉ

California condors released in costal sites are exposed to high levels of xenoestrogens, particularly p,p'-DDE, through scavenging of marine mammal carcasses. As a result, coastal condors carry a higher contaminant loads and experience eggshell thinning when compared to their inland counterparts. Given that condor estrogen receptors (Esrs) are activated by physiologically relevant levels of xenoestrogens, differences in vulnerability to endocrine disruption may exist depending on which Esr variant(s) an individual condor possesses. This work aims to characterize genetic polymorphisms in estrogen receptor genes (ESRs) in California condors; one identified for condor estrogen receptor 1 (ESR1) (N161S, E162D) and one in the ESR2 (T114M) gene. Each variant was confirmed in individual founder birds by direct PCR sequencing as well as in first generation offspring to understand the introduction of the alleles into the pedigree (6 birds for ESR1 and 5 birds for ESR2). Site-directed mutagenesis was performed on wild type receptors to produce each of the full-length ESR variants and activation of Esr1 and Esr2 variant and wild type receptors by xenoestrogens was compared. Maximal activation of the variant form of Esr1 was significantly higher (p < 0.05) in response to ethinyl estradiol (EE2), o,p'-DDE, p,p'-DDE, p,p'-DDT and p,p'-DDD compared to wild type Esr1. For Esr2 the wild type maximal activation was higher in response to o,p'-DDE, p,p'-DDE, o,p'-DDT, and p,p'-DDT. Although significant differences in activation of condor Esr variants by xenoestrogens occurred at high (micromolar) concentrations, they correspond to circulating concentrations previously reported in coastal birds. Release and relocation of California condors to the coast is a promising avenue for recovery, however, reproductive problems associated with xenoestrogen exposure pose a sub-lethal threat to long-term success. Based on above findings, future release decisions could be informed by ESR form(s) individual birds possess to reduce deleterious effects of xenoestrogen exposure and ultimately improve reproductive success in wild populations.


Sujet(s)
Phyto-oestrogènes/métabolisme , Récepteurs des oestrogènes/métabolisme , Animaux , Oiseaux , Femelle , Mâle
3.
Conserv Physiol ; 7(1): coz033, 2019.
Article de Anglais | MEDLINE | ID: mdl-31249689

RÉSUMÉ

All species in the extant Rhinocerotidae family are experiencing increased threats in the wild, making captive populations essential genetic reservoirs for species survival. However, managed species face distinct challenges in captivity, resulting in populations that are not self-sustaining. Captive southern white rhinoceros (Ceratotherium simum simum) have low reproductive rates and presumed acyclicity is common among females. Although many females fail to ovulate, follicle growth may occur and ovulation can be hormonally induced. Female southern white rhino (n = 6), housed as a bachelorette group, were determined to be ovulatory (n = 1) or anovulatory (n = 5) by serial ultrasound and fecal progestagen analysis. When follicles reached pre-ovulatory size (~35 mm), females (n = 4) were induced to ovulate in 11 trials with a GnRH analog (4.5 mg, SucroMate™) via single intramuscular injection. Nine trials resulted in ovulation (81.8%), all between 36 and 48 hours post-treatment. Ovulations were confirmed by progestagen elevation above baseline coincident with visualization of a corpus luteum (CL). Luteal phases were characterized as short (<50 days) or long (≥50 days). Between short and long cycles, only the number of days of progestagen above baseline was significantly different (P < 0.05), while days with visible luteal structures was not significant (P = 0.11). Both cycle types were observed following both spontaneous and induced ovulations. Furthermore, we showed that longer cycle lengths do not necessarily indicate early pregnancy loss as none of the females were bred or inseminated during the study. While anovulation is common in the southern white rhino captive population, ovulation induction can be achieved efficiently and predictably for use in conjunction with artificial insemination or to facilitate natural breeding. This information will lead to more efficient use of assisted reproductive technologies to overcome reproductive challenges in this species and to generate genetically healthy captive populations as a hedge against extinction.

4.
Gen Comp Endocrinol ; 238: 32-38, 2016 11 01.
Article de Anglais | MEDLINE | ID: mdl-27167501

RÉSUMÉ

The captive southern white rhinoceros (SWR) population is not currently self-sustaining, primarily due to poor or absent reproduction of captive-born (F1+) females. In this study, we investigate the role of dietary phytoestrogens in this reproductive phenomenon by characterizing activation of SWR estrogen receptors (ESRs) 1 and 2 by diet items from nine North American institutions and comparing female SWR fertility to total diet estrogenicity. Of the diet items tested, alfalfa hay and soy and alfalfa-based commercial pellets were found to be the most potent activators of SWR ESRs. In contrast, most grass hays tested were not estrogenic. The estrogenicity of total diets varied across the institutions surveyed and the degree of diet estrogenicity was positively associated with the percentage of the total diet comprised by pellets. Comparisons of fertility records of the institutions surveyed showed no significant relationship between diet estrogenicity and fertility for female SWR conceived or born in the wild (F0). However, for F1+ females, there was a significant negative relationship between institutional diet estrogenicity and fertility. Taken together, these data suggest that developmental exposure to phytoestrogens may be the cause of poor fertility in captive-born female SWR. Whether the low fertility of the current population of captive-born female SWR is permanent or can be reversed by removing phytoestrogens from the diet remains unclear. However, our findings suggest that in order for the SWR population to become self-sustaining, the development and feeding of low phytoestrogen diets should be strongly considered.


Sujet(s)
Régime alimentaire , Oestrogènes/métabolisme , Fécondité , Perissodactyla/métabolisme , Animaux , Comportement alimentaire , Femelle , Récepteurs des oestrogènes/métabolisme , Protéines recombinantes/métabolisme
5.
Endocrinology ; 156(12): 4448-57, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26372180

RÉSUMÉ

Recently, California condors (Gymnogyps californianus) have been reintroduced to coastal regions of California where they feed on marine mammal carcasses. There is evidence that coastal-dwelling condors experience reproductive issues, such as eggshell thinning, likely resulting from exposure to endocrine-disrupting chemicals (EDCs). To address this problem, we have identified and cloned condor estrogen receptors (ESRs) 1 and 2 and characterized their activation by EDCs present in the coastal habitats where condors reside. Dichlorodiphenyltrichloroethane (DDT) and its metabolites all activated ESR1 and ESR2, although their relative potency differed between the receptors. Bisphenol A, dieldrin, trans-nonachlor, and polychlorinated biphenyl 52 (PCB52) moderately activated both ESRs, whereas PCB138 and PCB153 stimulated little to no activation. Overall, EDC activation of condor ESR2, which is the first ESR2 cloned from a raptor species, was greater than that of ESR1. Significant activation of both condor ESRs by EDCs occurred at high concentrations (≥1µM), which are within the range of plasma levels of certain EDCs (eg, dichlorodiphenyldichloroethylene [p'p-DDE]) in coastal-dwelling condors. Finally, phylogenetic analyses of ESRs of 41 avian species identified a single amino acid position in ESR2 under positive selection. Mutation of this amino acid affected receptor activation by EDCs, suggesting the identity of this amino acid may influence EDC sensitivity of avian species. Together, these findings broaden our understanding of EDC interactions with ESRs in avian species. For condors specifically, these data could be used to evaluate EDC exposure risk at future release sites to identify those least likely to compromise the continued recovery of this species.


Sujet(s)
Perturbateurs endocriniens/pharmacologie , Récepteur alpha des oestrogènes/effets des médicaments et des substances chimiques , Récepteur bêta des oestrogènes/effets des médicaments et des substances chimiques , Animaux , Composés benzhydryliques/pharmacologie , Oiseaux/génétique , Californie , DDT/pharmacologie , Dieldrine/pharmacologie , Polluants environnementaux/pharmacologie , Récepteur alpha des oestrogènes/génétique , Récepteur bêta des oestrogènes/génétique , Hydrocarbures chlorés/pharmacologie , Mutation , Phénols/pharmacologie , Phylogenèse , Polychlorobiphényles/pharmacologie , Rapaces/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...