Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 196
Filtrer
1.
Expert Rev Proteomics ; : 1-8, 2024 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-39364775

RÉSUMÉ

INTRODUCTION: Biomarker discovery is increasingly moving from single omics to multiomics, as well as from multi-cell omics to single-cell omics. These transitions have increasingly adopted digital transformation technologies to accelerate the progression from data to insight. Here, we will discuss the concept of 'digitalomics' and how digital transformation directly impacts biomarker discovery. This will ultimately assist clinicians in personalized therapy and precision-medicine treatment decisions. AREAS COVERED: Genotype-to-phenotype-based insight generation involves integrating large amounts of complex multiomic data. This data integration and analysis is aided through digital transformation, leading to better clinical outcomes. We also highlight the challenges and opportunities of Digitalomics, and provide examples of the application of Artificial Intelligence, cloud- and high-performance computing, and use of tensors for multiomic analysis workflows. EXPERT OPINION: Biomarker discovery, aided by digital transformation, is having a significant impact on cancer, cardiovascular, infectious, immunological, and neurological diseases, among others. Data insights garnered from multiomic analyses, combined with patient meta data, aids patient stratification and targeted treatment across a broad spectrum of diseases. Digital transformation offers time and cost savings while leading to improved patent healthcare. Here, we highlight the impact of digital transformation on multiomics- based biomarker discovery with specific applications related to oncology.

2.
bioRxiv ; 2024 Sep 29.
Article de Anglais | MEDLINE | ID: mdl-39386620

RÉSUMÉ

Investigating chromosomal instability and aneuploidy within tumors is essential for understanding tumorigenesis and developing diagnostic and therapeutic strategies. Single-cell DNA sequencing technologies have enabled such analyses, revealing aneuploidies specific to individual cells within the same tumor. However, it has been difficult to scale the throughput of these methods to detect rare aneuploidies while maintaining high sensitivity. To overcome this deficit, we developed KaryoTap, a method combining custom targeted DNA sequencing panels for the Tapestri platform with a computational framework to enable detection of chromosome- and chromosome arm-scale aneuploidy (gains or losses) and copy number neutral loss of heterozygosity in all human chromosomes across thousands of single cells simultaneously. KaryoTap allows detecting gains and losses with an average accuracy of 83% for arm events and 91% for chromosome events. Importantly, together with chromosomal copy number, our system allows us to detect barcodes and gRNAs integrated into the cells' genome, thus enabling pooled CRISPR- or ORF-based functional screens in single cells. As a proof of principle, we performed a small screen to expand the chromosomes that can be targeted by our recently described CRISPR-based KaryoCreate system for engineering aneuploidy in human cells. KaryoTap will prove a powerful and flexible approach for the study of aneuploidy and chromosomal instability in both tumors and normal tissues.

3.
bioRxiv ; 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39282296

RÉSUMÉ

The interaction between tumors and their microenvironment is complex and heterogeneous. Recent developments in high-dimensional multiplexed imaging have revealed the spatial organization of tumor tissues at the molecular level. However, the discovery and thorough characterization of the tumor microenvironment (TME) remains challenging due to the scale and complexity of the images. Here, we propose a self-supervised representation learning framework, CANVAS, that enables discovery of novel types of TMEs. CANVAS is a vision transformer that directly takes high-dimensional multiplexed images and is trained using self-supervised masked image modeling. In contrast to traditional spatial analysis approaches which rely on cell segmentations, CANVAS is segmentation-free, utilizes pixel-level information, and retains local morphology and biomarker distribution information. This approach allows the model to distinguish subtle morphological differences, leading to precise separation and characterization of distinct TME signatures. We applied CANVAS to a lung tumor dataset and identified and validated a monocytic signature that is associated with poor prognosis.

4.
J Biol Chem ; 300(9): 107623, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39098531

RÉSUMÉ

Single-domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, therapeutic, and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research-i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat immunoglobulin G. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.


Sujet(s)
Spectrométrie de masse , Anticorps à domaine unique , Animaux , Anticorps à domaine unique/immunologie , Anticorps à domaine unique/composition chimique , Souris , Spectrométrie de masse/méthodes , Humains , Lapins , Immunoglobuline G/composition chimique , Immunoglobuline G/immunologie , Capra
5.
J Assist Reprod Genet ; 41(9): 2257-2269, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38951360

RÉSUMÉ

PURPOSE: Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS: Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS: Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION: Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.


Sujet(s)
Blastocyste , Éléments LINE , Humains , Éléments LINE/génétique , Blastocyste/métabolisme , Femelle , Embryon de mammifère/métabolisme , Développement embryonnaire/génétique , Mutagenèse par insertion/génétique , Aneuploïdie , Génome humain/génétique , Fécondation in vitro , Mâle , Variation génétique/génétique , Souris , Cartographie chromosomique/méthodes
7.
Front Oncol ; 14: 1428182, 2024.
Article de Anglais | MEDLINE | ID: mdl-39015503

RÉSUMÉ

Introduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results: Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion: Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

8.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38830843

RÉSUMÉ

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Sujet(s)
Protéine BRCA2 , Réplication de l'ADN , RNA polymerase II , Ribonuclease H , Humains , Protéine BRCA2/génétique , Protéine BRCA2/métabolisme , Ribonuclease H/métabolisme , Ribonuclease H/génétique , RNA polymerase II/métabolisme , Transcription génétique , Terminaison de la transcription , Altération de l'ADN , Origine de réplication , Structures en boucle R , Lignée cellulaire tumorale
9.
Cell Rep ; 43(5): 114229, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38758649

RÉSUMÉ

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.


Sujet(s)
Calcium , Glioblastome , Récepteurs couplés aux protéines G , Transduction du signal , Synaptotagmine I , Animaux , Humains , Souris , Calcium/métabolisme , Lignée cellulaire tumorale , AMP cyclique/métabolisme , Glioblastome/métabolisme , Glioblastome/anatomopathologie , Glioblastome/génétique , Cellules HEK293 , Souris nude , Protéines oncogènes , Liaison aux protéines , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Synaptotagmine I/génétique , Synaptotagmine I/métabolisme
10.
bioRxiv ; 2024 May 04.
Article de Anglais | MEDLINE | ID: mdl-38746333

RÉSUMÉ

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

11.
Res Sq ; 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38766187

RÉSUMÉ

The human gut microbiome is a promising therapeutic target, but interventions are hampered by our limited understanding of microbial ecosystems. Here, we present a platform to develop, evaluate, and score approaches to learn ecological interactions from microbiome time series data. The microbiome time series inference standardized test (MTIST) comprises: a simulation framework for the in silico generation of microbiome study data akin to what is obtained with quantitative next-generation sequencing approaches, a compilation of a large curated data set generated by the simulation framework representing 648 simulated microbiome studies containing 18,360 time series, with a total of 2,182,800 species abundance measurements, and a scoring method to rank ecological inference algorithms. We use the MTIST platform to rank five implementations of microbiome inference approaches, revealing that while all algorithms performed well on ecosystems with few species (3 and 10), all algorithms failed to infer most interaction in a large ecosystem with 100 member species. However, we do find that the strongest interactions within a large ecosystem are inferred with higher success by all algorithms. Finally, we use the MTIST platform to compare different microbiome study designs, characterizing tradeoffs between samples per subject and number of subjects. Interestingly, we find that when only few samples can be collected per subject, ecological inference is most successful when these samples are collected with highest feasible temporal frequency. Taken together, we provide a computational tool to aid the development of better microbiome ecosystem inference approaches, which will be crucial towards the development of reliable and predictable therapeutic approaches that target the microbiome ecosystem.

12.
bioRxiv ; 2024 Feb 12.
Article de Anglais | MEDLINE | ID: mdl-38545623

RÉSUMÉ

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

13.
BMC Bioinformatics ; 25(1): 92, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38429657

RÉSUMÉ

BACKGROUND: In recent years, researchers have made significant strides in understanding the heterogeneity of breast cancer and its various subtypes. However, the wealth of genomic and proteomic data available today necessitates efficient frameworks, instruments, and computational tools for meaningful analysis. Despite its success as a prognostic tool, the PAM50 gene signature's reliance on many genes presents challenges in terms of cost and complexity. Consequently, there is a need for more efficient methods to classify breast cancer subtypes using a reduced gene set accurately. RESULTS: This study explores the potential of achieving precise breast cancer subtype categorization using a reduced gene set derived from the PAM50 gene signature. By employing a "Few-Shot Genes Selection" method, we randomly select smaller subsets from PAM50 and evaluate their performance using metrics and a linear model, specifically the Support Vector Machine (SVM) classifier. In addition, we aim to assess whether a more compact gene set can maintain performance while simplifying the classification process. Our findings demonstrate that certain reduced gene subsets can perform comparable or superior to the full PAM50 gene signature. CONCLUSIONS: The identified gene subsets, with 36 genes, have the potential to contribute to the development of more cost-effective and streamlined diagnostic tools in breast cancer research and clinical settings.


Sujet(s)
Tumeurs du sein , Humains , Femelle , Tumeurs du sein/génétique , Tumeurs du sein/diagnostic , Marqueurs biologiques tumoraux/génétique , Protéomique , Analyse de profil d'expression de gènes/méthodes , Techniques génétiques
14.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38458201

RÉSUMÉ

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Sujet(s)
Cyclines , Réparation de mésappariement de l'ADN , Animaux , Cyclines/génétique , Antigène nucléaire de prolifération cellulaire/génétique , Antigène nucléaire de prolifération cellulaire/métabolisme , Inhibiteur p21 de kinase cycline-dépendante/génétique , Interphase , Mammifères/métabolisme
16.
bioRxiv ; 2024 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-38260436

RÉSUMÉ

The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.

17.
Cell Rep ; 42(11): 113374, 2023 11 28.
Article de Anglais | MEDLINE | ID: mdl-37938973

RÉSUMÉ

Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of ß-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.


Sujet(s)
Glioblastome , Humains , Glioblastome/anatomopathologie , Phosphorylation , Récepteurs couplés aux protéines G/métabolisme , Transduction du signal
20.
J Proteome Res ; 22(11): 3625-3639, 2023 11 03.
Article de Anglais | MEDLINE | ID: mdl-37857377

RÉSUMÉ

An accurate quantification of HLA class I gene expression is important in understanding the interplay with the tumor microenvironment of antitumor cytotoxic T cell activities. Because HLA-I sequences are highly variable, standard RNAseq and mass spectrometry-based quantification workflows using common genome and protein sequence references do not provide HLA-I allele specific quantifications. Here, we used personalized HLA-I nucleotide and protein reference sequences based on the subjects' HLA-I genotypes and surveyed tumor and adjacent normal samples from patients across nine cancer types. Mass spectrometry using data dependent acquisition data was validated to be sufficient to estimate HLA-A protein expression at the allele level. We found that HLA-I proteins were present in significantly higher levels in tumors compared to adjacent normal tissues from 41 to 63% of head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and clear cell renal cell carcinoma patients, and this was driven by increased levels of HLA-I gene transcripts. Most immune cell types are universally enriched in HLA-I high tumors, while endothelial and neuronal cells showed divergent relationships with HLA-I. Pathway analysis revealed that tumor senescence and autophagy activity influence the level of HLA-I proteins in glioblastoma. Genes correlated to HLA-I protein expression are mostly the ones directly involved in HLA-I function in immune response and cell death, while glycosylation genes are exclusively co-expressed with HLA-I at the protein level.


Sujet(s)
Néphrocarcinome , Carcinome épidermoïde , Tumeurs du rein , Protéogénomique , Humains , Antigènes d'histocompatibilité de classe I/génétique , Antigènes d'histocompatibilité de classe I/analyse , Carcinome épidermoïde/métabolisme , Néphrocarcinome/génétique , Néphrocarcinome/anatomopathologie , Tumeurs du rein/anatomopathologie , Microenvironnement tumoral
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE