Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 15(1): 316-29, 2013 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-23165521

RÉSUMÉ

The study of the magnetic properties of Co nanoparticles (with an average diameter of 10.3 nm) grown using a gas-phase aggregation source and embedded in Au and V matrices is presented. We investigate how the matrix, the number of embedded nanoparticles (counted by coverage percentage), the interparticle interactions and the complex nanoparticles/matrix interface structure define the magnetic properties of the studied systems. A threshold coverage of 3.5% of a monolayer was found in both studied systems: below this coverage, nanoparticles behave as an assembly of independent single-domain magnetic entities with uniaxial anisotropy. Above the threshold it is found that the magnetic behavior of the systems is more matrix dependent. While magnetic relaxation and Henkel plots measurements stress the importance of the dipolar interactions and the formation of coherent clusters in the case of the Au matrix, the magnetic behavior of cobalt clusters embedded in the vanadium matrix is explained through the formation of a spin glass-like state at the V-Co interface that screens the magnetic interactions between NPs.

2.
Rev Sci Instrum ; 82(4): 043902, 2011 Apr.
Article de Anglais | MEDLINE | ID: mdl-21529020

RÉSUMÉ

Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

3.
Rev Sci Instrum ; 80(7): 073909, 2009 Jul.
Article de Anglais | MEDLINE | ID: mdl-19655967

RÉSUMÉ

In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE