Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cancer Immunol Immunother ; 73(6): 100, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38630291

RÉSUMÉ

In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.


Sujet(s)
Myélome multiple , Humains , Myélome multiple/thérapie , Antigène de maturation des cellules B , Anticorps , Antigène CD28 , Thérapie cellulaire et tissulaire
2.
Nature ; 629(8011): 417-425, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38658748

RÉSUMÉ

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Sujet(s)
Lymphocytes T CD8+ , Prolifération cellulaire , Dinoprostone , Lymphocytes TIL , Tumeurs , Cellules souches , Échappement de la tumeur à la surveillance immunitaire , Animaux , Femelle , Humains , Mâle , Souris , Lymphocytes T CD8+/cytologie , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Différenciation cellulaire , Lignée cellulaire tumorale , Dinoprostone/métabolisme , Modèles animaux de maladie humaine , Facteur nucléaire hépatocytaire HNF-1 alpha/métabolisme , Interleukine-2 , Noeuds lymphatiques/cytologie , Noeuds lymphatiques/immunologie , Lymphocytes TIL/cytologie , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Souris de lignée C57BL , Tumeurs/immunologie , Tumeurs/prévention et contrôle , Sous-type EP2 des récepteurs des prostaglandines E/déficit , Sous-type EP2 des récepteurs des prostaglandines E/métabolisme , Sous-type EP4 des récepteurs des prostaglandines E/déficit , Sous-type EP4 des récepteurs des prostaglandines E/métabolisme , Transduction du signal , Cellules souches/cytologie , Cellules souches/immunologie , Cellules souches/métabolisme , Échappement de la tumeur à la surveillance immunitaire/immunologie
3.
Int J Cancer ; 153(10): 1706-1725, 2023 11 15.
Article de Anglais | MEDLINE | ID: mdl-37350095

RÉSUMÉ

The clinical application of chimeric antigen receptor (CAR) T-cell therapy has rapidly changed the treatment options for terminally ill patients with defined blood-borne cancer types. However, CAR T-cell therapy can lead to severe therapy-associated toxicities including CAR-related hematotoxicity, ON-target OFF-tumor toxicity, cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Just as CAR T-cell therapy has evolved regarding receptor design, gene transfer systems and production protocols, the management of side effects has also improved. However, because of measures taken to abrogate adverse events, CAR T-cell viability and persistence might be impaired before complete remission can be achieved. This has fueled efforts for the development of extrinsic and intrinsic strategies for better control of CAR T-cell activity. These approaches can mediate a reversible resting state or irreversible T-cell elimination, depending on the route chosen. Control can be passive or active. By combination of CAR T-cells with T-cell inhibiting compounds, pharmacologic control, mostly independent of the CAR construct design used, can be achieved. Other strategies involve the genetic modification of T-cells or further development of the CAR construct by integration of molecular ON/OFF switches such as suicide genes. Alternatively, CAR T-cell activity can be regulated intracellularly through a self-regulation function or extracellularly through titration of a CAR adaptor or of a priming small molecule. In this work, we review the current strategies and mechanisms to control activity of CAR T-cells reversibly or irreversibly for preventing and for managing therapy-associated toxicities.


Sujet(s)
Tumeurs hématologiques , Tumeurs , Syndromes neurotoxiques , Récepteurs chimériques pour l'antigène , Humains , Récepteurs chimériques pour l'antigène/génétique , Lymphocytes T , Récepteurs aux antigènes des cellules T/génétique , Syndromes neurotoxiques/étiologie , Immunothérapie adoptive/effets indésirables , Immunothérapie adoptive/méthodes , Tumeurs/thérapie , Tumeurs hématologiques/étiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE