Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cerebellum ; 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38850484

RÉSUMÉ

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

2.
Mol Neurobiol ; 58(10): 4921-4943, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34227061

RÉSUMÉ

Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.


Sujet(s)
Protéines de l'oeil/génétique , Protéines membranaires/génétique , Mutation/génétique , Neurofibres myélinisées/anatomopathologie , Plasticité neuronale/physiologie , Ataxies spinocérébelleuses/génétique , Ataxies spinocérébelleuses/anatomopathologie , Animaux , Cervelet/anatomopathologie , Femelle , Mâle , Troubles moteurs/génétique , Troubles moteurs/anatomopathologie , Techniques de culture d'organes , Rats , Rat Long-Evans , Rats transgéniques
3.
Front Cell Neurosci ; 13: 428, 2019.
Article de Anglais | MEDLINE | ID: mdl-31616255

RÉSUMÉ

Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.

4.
Mol Phylogenet Evol ; 49(1): 136-52, 2008 Oct.
Article de Anglais | MEDLINE | ID: mdl-18621133

RÉSUMÉ

Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.


Sujet(s)
Gènes régulateurs , Perciformes/classification , Perciformes/génétique , Phylogenèse , Animaux , Théorème de Bayes , ADN mitochondrial/génétique , Évolution moléculaire , Gènes de mitochondrie , Gènes d'ARN ribosomique , Fonctions de vraisemblance , Mitochondries/génétique , Alignement de séquences , Analyse de séquence d'ADN
5.
Mol Phylogenet Evol ; 45(1): 50-68, 2007 Oct.
Article de Anglais | MEDLINE | ID: mdl-17625921

RÉSUMÉ

Marine butterflyfishes (10 genera, 114 species) are conspicuously beautiful and abundant animals found on coral reefs worldwide, and are well studied due to their ecological importance and commercial value. Several phylogenies based on morphological and molecular data exist, yet a well-supported molecular phylogeny at the species level for a wide range of taxa remains to be resolved. Here we present a molecular phylogeny of the butterflyfishes, including representatives of all genera (except Parachaetodon) and at least one representative of all commonly cited subgenera of Chaetodon (except Roa sensuBlum, 1988). Genetic data were collected for 71 ingroup and 13 outgroup taxa, using two nuclear and three mitochondrial genes that total 3332 nucleotides. Bayesian inference, parsimony, and maximum likelihood methods produced a well-supported phylogeny with strong support for a monophyletic Chaetodontidae. The Chaetodon subgenera Exornator and Chaetodon were found to be polyphyletic, and the genus Amphichaetodon was not the basal sister group to the rest of the family as had been previously proposed. Molecular phylogenetic analysis of data from 5 genes resolved some clades in agreement with previous phylogenetic studies, however the topology of relationships among major butterflyfish groups differed significantly from previous hypotheses. The analysis recovered a clade containing Amphichaetodon, Coradion, Chelmonops, Chelmon, Forcipiger, Hemitaurichthys, Johnrandallia, and Heniochus. Prognathodes was resolved as the sister to all Chaetodon, as in previous hypotheses, although the topology of subgeneric clades differed significantly from hypotheses based on morphology. We use the species-level phylogeny for the butterflyfishes to resolve long-standing questions regarding the use of subgenera in Chaetodon, to reconstruct molecular rates and estimated dates of diversification of major butterflyfish clades, and to examine global biogeographic patterns.


Sujet(s)
Classification/méthodes , Évolution moléculaire , Géographie , Perciformes/classification , Perciformes/génétique , Phylogenèse , Animaux , Spéciation génétique , Fonctions de vraisemblance , Facteurs temps
6.
Proc Biol Sci ; 272(1567): 993-1000, 2005 May 22.
Article de Anglais | MEDLINE | ID: mdl-16024356

RÉSUMÉ

The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.


Sujet(s)
Comportement alimentaire/physiologie , Perciformes/génétique , Phylogenèse , Crâne/anatomie et histologie , Crâne/physiologie , Animaux , Séquence nucléotidique , Théorème de Bayes , Phénomènes biomécaniques , ADN mitochondrial/génétique , Techniques histologiques , Fonctions de vraisemblance , Modèles génétiques , Données de séquences moléculaires , Perciformes/anatomie et histologie , Perciformes/physiologie , Analyse de séquence d'ADN , Spécificité d'espèce
7.
Mol Phylogenet Evol ; 32(2): 575-87, 2004 Aug.
Article de Anglais | MEDLINE | ID: mdl-15223039

RÉSUMÉ

The labrid tribe Odacini comprises four genera and 12 species of fishes that inhabit shallow kelp forest and seagrass areas in temperate waters of Australia and New Zealand. Odacines are morphologically disparate, but share synapomorphies in fin structure and fusion of teeth into a beak-like oral jaw. A phylogenetic analysis of odacines was conducted to investigate their relationships to other labrid fishes, the relationships of species within the tribe, and the evolution of herbivory within the group. Fragments from two mitochondrial genes, 12S rDNA and 16S rDNA, and two nuclear genes, Tmo4C4 and RAG2, were sequenced for seven odacine species (representing all four genera), eight species representing the other major labrid lineages, and three outgroup species. Maximum likelihood and maximum parsimony analyses on the resulting 2338 bp of DNA sequence produced nearly identical topologies differing only in the placement of a clade containing the cheiline Cheilinus fasciatus and the scarine Cryptotomus roseus. The remaining clades received strong bootstrap support under maximum parsimony, and all clades in the maximum likelihood analysis received high bootstrap proportions and high posterior probabilities. The hypsigenyine labrid Choerodon anchorago formed the sister group to the odacines. Within the odacines, Odax cyanoallix+Odax pullus formed the sister to the remaining odacines, with Odax acroptilus, Odax cyanomelas, and Siphonognathus argyrophanes forming successively closer sister groups to the clade Haletta semifasciatus+Neoodax balteatus. Either herbivory evolved twice in the odacines, or herbivory evolved once with two reversions to carnivory. The latter hypothesis appears more likely in the light of odacine feeding biology.


Sujet(s)
Perciformes/classification , Phylogenèse , Animaux , Australie , Protéines de liaison à l'ADN/génétique , Perciformes/génétique , ARN ribosomique/génétique , ARN ribosomique 16S/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...