Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plant Physiol ; 158(4): 1860-72, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-22353573

RÉSUMÉ

The Arabidopsis (Arabidopsis thaliana) lipase-like protein PHYTOALEXIN DEFICIENT4 (PAD4) is essential for defense against green peach aphid (GPA; Myzus persicae) and the pathogens Pseudomonas syringae and Hyaloperonospora arabidopsidis. In basal resistance to virulent strains of P. syringae and H. arabidopsidis, PAD4 functions together with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defenses. By contrast, dissociated forms of PAD4 and EDS1 signal effector-triggered immunity to avirulent strains of these pathogens. PAD4-controlled defense against GPA requires neither EDS1 nor SA. Here, we show that resistance to GPA is unaltered in an eds1 salicylic acid induction deficient2 (sid2) double mutant, indicating that redundancy between EDS1 and SID2-dependent SA, previously reported for effector-triggered immunity conditioned by certain nucleotide-binding-leucine-rich repeat receptors, does not explain the dispensability of EDS1 and SID2 in defense against GPA. Mutation of a conserved serine (S118) in the predicted lipase catalytic triad of PAD4 abolished PAD4-conditioned antibiosis and deterrence against GPA feeding, but S118 was dispensable for deterring GPA settling and promoting senescence in GPA-infested plants as well as for pathogen resistance. These results highlight distinct molecular activities of PAD4 determining particular aspects of defense against aphids and pathogens.


Sujet(s)
Aphides/physiologie , Protéines d'Arabidopsis/métabolisme , Arabidopsis/immunologie , Arabidopsis/parasitologie , Carboxylic ester hydrolases/métabolisme , Peronospora/physiologie , Prunus/parasitologie , Pseudomonas syringae/physiologie , Séquence d'acides aminés , Acides aminés/métabolisme , Animaux , Antibiose/immunologie , Arabidopsis/génétique , Arabidopsis/microbiologie , Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/génétique , Carboxylic ester hydrolases/composition chimique , Carboxylic ester hydrolases/génétique , Résistance à la maladie/immunologie , Comportement alimentaire , Régulation de l'expression des gènes végétaux , Modèles biologiques , Données de séquences moléculaires , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Maladies des plantes/parasitologie , Maladies des plantes/prévention et contrôle , Exsudats végétaux/métabolisme , Feuilles de plante/croissance et développement , Feuilles de plante/microbiologie , Feuilles de plante/parasitologie , Faisceau vasculaire des plantes/métabolisme , Faisceau vasculaire des plantes/microbiologie , Faisceau vasculaire des plantes/parasitologie , ARN messager/génétique , ARN messager/métabolisme , Facteurs temps
2.
New Phytol ; 191(1): 107-119, 2011 Jul.
Article de Anglais | MEDLINE | ID: mdl-21434927

RÉSUMÉ

• Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.


Sujet(s)
Protéines d'Arabidopsis/physiologie , Arabidopsis/immunologie , Carboxylic ester hydrolases/physiologie , Protéines de liaison à l'ADN/physiologie , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Carboxylic ester hydrolases/composition chimique , Carboxylic ester hydrolases/génétique , Carboxylic ester hydrolases/métabolisme , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/génétique , Immunité innée/génétique , Mutation , Végétaux génétiquement modifiés/immunologie , Techniques de double hybride
3.
Mol Plant Microbe Interact ; 22(12): 1645-55, 2009 Dec.
Article de Anglais | MEDLINE | ID: mdl-19888829

RÉSUMÉ

Plant resistance to pathogens is commonly associated with a hypersensitive response (HR), but the degree to which the HR is responsible for incompatibility is subject to debate. Resistance to aphids is likely to share features with resistance to pathogens but is less well understood. Here, we report effective resistance to the pea aphid Acyrthosiphon pisum in Medicago truncatula. Aphids lost weight and died rapidly (within two days) on the resistant genotype Jemalong, which developed necrotic lesions following infestation. Lesions were induced by nonvascular intracellular stylet punctures by aphids, remained localized to the site of stylet entry, stained for the presence of reactive oxygen species, and were similar to the HR induced by the bacterial pathogen Pseudomonas syringae pv. phaseolicola. The implication that aphid-induced lesions confer resistance was tested by quantitative trait loci analysis using recombinant inbred lines derived from a cross between Jemalong and the susceptible genotype DZA315.16. One major locus, RAP1, was identified that was sufficient to confer race-specific resistance against the pea aphid and was mapped to the middle of chromosome 3. Surprisingly, a separate locus, mapping to the top of chromosome 3, governed aphid-induced HR, indicating that the HR-like lesions are not required for RAP1-mediated aphid resistance.


Sujet(s)
Aphides/physiologie , Medicago truncatula/génétique , Medicago truncatula/parasitologie , Animaux , Marqueurs génétiques , Prédisposition génétique à une maladie , Interactions hôte-parasite/génétique , Medicago truncatula/métabolisme , Maladies des plantes/génétique , Maladies des plantes/parasitologie , Locus de caractère quantitatif
4.
Plant J ; 52(2): 332-41, 2007 Oct.
Article de Anglais | MEDLINE | ID: mdl-17725549

RÉSUMÉ

Green peach aphid (GPA) Myzus persicae (Sülzer) is a phloem-feeding insect with an exceptionally wide host range. Previously, it has been shown that Arabidopsis thaliana PHYTOALEXIN DEFICIENT4 (PAD4), which is expressed at elevated levels in response to GPA infestation, is required for resistance to GPA in the Arabidopsis accession Columbia. We demonstrate here that the role of PAD4 in the response to GPA is conserved in Arabidopsis accessions Wassilewskija and Landsberg erecta. Electrical monitoring of aphid feeding behavior revealed that PAD4 modulates a phloem-based defense mechanism against GPA. GPA spends more time actively feeding from the sieve elements of pad4 mutants than from wild-type plants, and less time feeding on transgenic plants in which PAD4 is ectopically expressed. The activity of PAD4 in limiting phloem sap uptake serves as a deterrent in host-plant choice, and restricts aphid population size. In Arabidopsis defense against pathogens, all known PAD4 functions require its signaling and stabilizing partner EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1). Bioassays with eds1 mutants alone or in combination with pad4 and with plants conditionally expressing PAD4 under the control of a dexamethasone-inducible promoter reveal that PAD4-modulated defense against GPA does not involve EDS1. Thus, a PAD4 mode of action that is uncoupled from EDS1 determines the extent of aphid feeding in the phloem.


Sujet(s)
Aphides/physiologie , Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Arabidopsis/parasitologie , Carboxylic ester hydrolases/métabolisme , Protéines de liaison à l'ADN/métabolisme , Phloème/métabolisme , Maladies des plantes/parasitologie , Animaux , Arabidopsis/effets des médicaments et des substances chimiques , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Carboxylic ester hydrolases/génétique , Protéines de liaison à l'ADN/génétique , Dexaméthasone/pharmacologie , Régulation de l'expression des gènes végétaux , Mutation , Maladies des plantes/génétique , Végétaux génétiquement modifiés
5.
Plant Cell ; 17(9): 2601-13, 2005 Sep.
Article de Anglais | MEDLINE | ID: mdl-16040633

RÉSUMÉ

Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/métabolisme , Carboxylic ester hydrolases/métabolisme , Protéines de liaison à l'ADN/métabolisme , Immunité innée/physiologie , Transduction du signal/physiologie , Séquence d'acides aminés , Arabidopsis/anatomie et histologie , Arabidopsis/génétique , Protéines d'Arabidopsis/génétique , Carboxylic ester hydrolases/génétique , Protéines de liaison à l'ADN/génétique , Données de séquences moléculaires , Complexes multiprotéiques , Phénotype , Feuilles de plante/composition chimique , Végétaux génétiquement modifiés , Plant/cytologie , Plant/métabolisme , Plant/microbiologie , Alignement de séquences
6.
Curr Opin Plant Biol ; 8(4): 383-9, 2005 Aug.
Article de Anglais | MEDLINE | ID: mdl-15939664

RÉSUMÉ

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4), constitute a regulatory hub that is essential for basal resistance to invasive biotrophic and hemi-biotrophic pathogens. EDS1 and PAD4 are also recruited by Toll-Interleukin-1 receptor (TIR)-type nucleotide binding-leucine rich repeat (NB-LRR) proteins to signal isolate-specific pathogen recognition. Recent work points to a fundamental role of EDS1 and PAD4 in transducing redox signals in response to certain biotic and abiotic stresses. These intracellular proteins are important activators of salicylic acid (SA) signaling and also mediate antagonism between the jasmonic acid (JA) and ethylene (ET) defense response pathways. EDS1 forms several molecularly and spatially distinct complexes with PAD4 and a newly discovered in vivo signaling partner, SENESCENCE ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4 and SAG101 provide a major barrier to infection by both host-adapted and non-host pathogens.


Sujet(s)
Protéines d'Arabidopsis/physiologie , Arabidopsis/immunologie , Carboxylic ester hydrolases/physiologie , Protéines de liaison à l'ADN/physiologie , Maladies des plantes , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Carboxylic ester hydrolases/métabolisme , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes végétaux , Stress oxydatif , Transduction du signal
7.
Plant J ; 29(5): 569-79, 2002 Mar.
Article de Anglais | MEDLINE | ID: mdl-11874570

RÉSUMÉ

In Arabidopsis, EDS1 is essential for disease resistance conferred by a structural subset of resistance (R) proteins containing a nucleotide-binding site, leucine-rich-repeats and amino-terminal similarity to animal Toll and Interleukin-1 (so-called TIR-NBS-LRR proteins). EDS1 is not required by NBS-LRR proteins that possess an amino-terminal coiled-coil motif (CC-NBS-LRR proteins). Using virus-induced gene silencing (VIGS) of a Nicotiana benthaminana EDS1 orthologue, we investigated the role of EDS1 in resistance specified by structurally distinct R genes in transgenic N. benthamiana. Resistance against tobacco mosaic virus mediated by tobacco N, a TIR-NBS-LRR protein, was EDS1-dependent. Two other R proteins, Pto (a protein kinase), and Rx (a CC-NBS-LRR protein) recognizing, respectively, a bacterial and viral pathogen did not require EDS1. These data, together with the finding that expression of N. benthamiana and Arabidopsis EDS1 mRNAs are similarly regulated, lead us to conclude that recruitment of EDS1 by TIR-NBS-LRR proteins is evolutionarily conserved between dicotyledenous plant species in resistance against bacterial, oomycete and viral pathogens. We further demonstrate that VIGS is a useful approach to dissect resistance signaling pathways in a genetically intractable plant species.


Sujet(s)
Protéines d'Arabidopsis , Protéines de liaison à l'ADN/génétique , Nicotiana/génétique , Protéines végétales/génétique , Virus de la mosaïque du tabac/croissance et développement , Séquence d'acides aminés , Arabidopsis/génétique , Arabidopsis/virologie , Clonage moléculaire , Protéines de liaison à l'ADN/métabolisme , Expression des gènes , Extinction de l'expression des gènes , Immunité innée/génétique , Glissières à leucine/génétique , Triacylglycerol lipase/génétique , Triacylglycerol lipase/métabolisme , Données de séquences moléculaires , Maladies des plantes/génétique , Maladies des plantes/virologie , Protéines végétales/métabolisme , Virus des plantes/croissance et développement , Végétaux génétiquement modifiés , Rhizobium/génétique , Similitude de séquences d'acides aminés , Transduction du signal/génétique , Nicotiana/virologie
8.
Science ; 295(5562): 2077-80, 2002 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-11847308

RÉSUMÉ

Animal SGT1 is a component of Skp1-Cullin-F-box protein (SCF) ubiquitin ligases that target regulatory proteins for degradation. Mutations in one (SGT1b) of two highly homologous Arabidopsis SGT1 genes disable early plant defenses conferred by multiple resistance (R) genes. Loss of SGT1b function in resistance is not compensated for by SGT1a. R genes differ in their requirements for SGT1b and a second resistance signaling gene, RAR1, that was previously implicated as an SGT1 interactor. Moreover, SGT1b and RAR1 contribute additively to RPP5-mediated pathogen recognition. These data imply both operationally distinct and cooperative functions of SGT1 and RAR1 in plant disease resistance.


Sujet(s)
Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Arabidopsis/génétique , Protéines de transport/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Gènes de plante , Maladies des plantes , Protéines végétales/génétique , Motifs d'acides aminés , Séquence d'acides aminés , Arabidopsis/métabolisme , Arabidopsis/microbiologie , Protéines d'Arabidopsis/composition chimique , Protéines de transport/composition chimique , Protéines de transport/génétique , Protéines du cycle cellulaire/composition chimique , Mort cellulaire , Immunité innée , Protéines et peptides de signalisation intracellulaire , Données de séquences moléculaires , Mutation , Oomycetes/pathogénicité , Oomycetes/physiologie , Feuilles de plante/microbiologie , Protéines végétales/physiologie , Structure tertiaire des protéines , Alignement de séquences , Spores fongiques/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE