Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 38
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; : e2403288, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946670

RÉSUMÉ

Amphiphilic block copolymers are promising candidates for the fabrication of ultrafiltration membranes with an isoporous integral asymmetric structure. The membranes are typically fabricated by the combination of block copolymer self-assembly and the non-solvent-induced phase separation (SNIPS) process resulting in isoporous integral asymmetric membranes. Certainly, all these membranes lack thermal and chemical stability limiting the usage of such materials. Within this study, the fabrication of completely cross-linked isoporous integral asymmetric block copolymer membranes is demonstrated by UV cross-linking resulting in chemical and thermal stable ultrafiltration membranes. The UV cross-linking process of PVBCB-b-P4VP (poly(4-vinylbenzocyclobutene)-b-poly(4vinylpyridine)) block copolymer membranes in dependency of irradiation time, intensity, distance between membrane and UV source and the wavelength is investigated. Furthermore, it is shown that the penetration depths can be increased by soaking the membranes in wave-guiding solutions before UV cross-linking is carried out. Moreover, a completely new and easy cross-linking strategy is developed based on isorefractive solvents resulting in thermal and chemically stable membranes that are cross-linked through the whole membrane thickness. Finally, the new cross-linking strategy in isorefractive solutions is transferred to commercial PVDF and PAN-co-PVC polymer membranes paving the way for more stable and sustainable ultrafiltration membranes.

2.
ACS Omega ; 9(13): 15282-15293, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38585124

RÉSUMÉ

This paper illustrates the gas adsorption properties of newly synthesized nanoporous cross-linked polymer networks (CPNs). All synthesized CPNs possess N-rich functional groups and are used for the utilization of carbon dioxide and methane. Good gas adsorption and selectivities are obtained for all of the samples. Among the materials, HEREON2 outperforms better selectivity for methane separation from nitrogen rather than zeolites, activated carbons, molecular sieves, covalent organic frameworks, and metal-organic frameworks (MOFs). The accessibility of the N-rich functionalities makes these materials potential candidates for the separation of hydrocarbons via increased polarizabilities. High-pressure adsorption experiments showed that the synthesized two-dimensional nanoporous materials also have a high affinity toward carbon dioxide. HEREON2 powders showed an increased experimental CO2/N2 selectivity of ∼25,000 at 50 bar due to the presence of nitrogen groups in the structure. Fourier-transform infrared spectroscopy (FTIR), solid-state NMR, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were applied for the characterization of the synthesized nanoporous CPNs. The results show a potential new pathway for future CPN membrane development.

3.
Article de Anglais | MEDLINE | ID: mdl-38600824

RÉSUMÉ

Surface modification is an attractive strategy to adjust the properties of polymer membranes. Unfortunately, predictive structure-processing-property relationships between the modification strategies and membrane performance are often unknown. One possibility to tackle this challenge is the application of data-driven methods such as machine learning. In this study, we applied machine learning methods to data sets containing the performance parameters of modified membranes. The resulting machine learning models were used to predict performance parameters, such as the pure water permeability and the zeta potential of membranes modified with new substances. The predictions had low prediction errors, which allowed us to generalize them to similar membrane modifications and processing conditions. Additionally, machine learning methods were able to identify the impact of substance properties and process parameters on the resulting membrane properties. Our results demonstrate that small data sets, as they are common in materials science, can be used as training data for predictive machine learning models. Therefore, machine learning shows great potential as a tool to expedite the development of high-performance membranes while reducing the time and costs associated with the development process at the same time.

4.
RSC Adv ; 14(14): 9631-9645, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38525056

RÉSUMÉ

In this study, porous polymers of intrinsic microporosity (PIM-1) membranes were prepared by non-solvent induced phase inversion (NIPS) and investigated for water vapor transport in view of their application in membrane distillation (MD). Due to the lack of high boiling point solvents for PIM-1 that are also water miscible, the mixture of tetrahydrofuran (THF) and N-methyl-2-pyrrolidone (NMP) was found to be optimal for the formation of a membrane with a developed porous system both on the membrane surface and in the bulk. PIM-1 was synthesized by using low and high temperature methods to observe how molecular weight effects the membrane structure. Low molecular weight PIM-1 was produced at low temperatures, while high molecular weight PIM-1 was obtained at high temperatures. Several membranes were prepared, including PM-6, PM-9, and PM-11 from low molecular weight PIM-1, and PM-13 from high molecular weight PIM-1. Scanning electron microscopy (SEM) was used to image the surface and cross-section of different porous PIM-1 membranes. Among all the PIM-1 membranes (PM) obtained, PM-6, PM-9, PM-11 and PM-13 showed the most developed porous structure, while PM-13 showed large voids in the bulk of the membrane. Contact angle measurements showed that all PIM-1 porous membranes are highly hydrophobic. Liquid water flux measurements showed that PM-6, PM-9 and PM-11 showed minimal water fluxes due to small surface pore size, while PM-13 showed a high water flux due to a large surface pore size. Water vapor transport measurements showed high permeance values for all membranes, demonstrating the applicability of the developed membranes for MD. In addition, a thin film composite (TFC) membrane with PIM-1 selective layer was prepared and investigated for water vapor transport to compare with porous PIM-1 membranes. The TFC membrane showed an approximately 4-fold lower vapor permeance than porous membranes. Based on these results, we postulated that the use of porous PIM-1 membranes could be promising for MD due to their hydrophobic nature and the fact that the porous membranes allow vapor permeability through the membrane but not liquid water. The TFC membrane can be used in cases where the transfer of water-soluble contaminants must be absolutely avoided.

5.
ACS Macro Lett ; 11(9): 1142-1147, 2022 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-36048420

RÉSUMÉ

Ultrafiltration (UF) membranes, particularly membranes fabricated from self-assembled diblock copolymers, hold promise in wastewater treatment, dairy, and food industries. Membrane development goals involve combining a highly porous selective layer with a narrow pore size distribution with a mechanically stable supporting layer to achieve constant flux. To date, isoporous integral asymmetric membranes have been formed either as flat sheets or hollow fibers, and a surface-selective layer determines membrane separation performance. A unique isoporous membrane of the poly(4-vinylbenzocyclobutene)-b-poly(4-vinylpyridine) (PVBCB-b-P4VP) diblock copolymer with a substructure of almost homogeneous porosity throughout the body of the material (three-dimensional porosity) has been developed. Moreover, the matrix of the membrane (PVCB) enables it to undergo cross-linking, allowing the membrane to be thermally sterilized and applied in high-temperature UF applications.


Sujet(s)
Polymères , Ultrafiltration , Membrane artificielle , Polymères/composition chimique , Porosité , Ultrafiltration/méthodes
6.
Membranes (Basel) ; 12(6)2022 May 31.
Article de Anglais | MEDLINE | ID: mdl-35736284

RÉSUMÉ

Ion adsorbing ultrafiltration membranes provide an interesting possibility to remove toxic ions from water. Furthermore, it is also possible to recover valuable elements. In this work, we demonstrate two easy strategies to modify polyacrylonitrile membranes with anion and cation adsorbing groups. The membranes were modified to have positively charged amine groups or negatively charged carboxyl groups. The success of the reactions was confirmed using IR spectroscopy and zeta-potential measurements. The membranes carrying negatively charged groups provided a negative zeta-potential and had an isoelectric point at pH 3.6, while the membranes carrying positively charged groups had a positive zeta-potential in the analyzed pH range. Since only the surface of the polymer was modified, the pore size and permeance of the membranes were not drastically affected. The membranes prepared by both modification strategies had a pure water permeance higher than 1000 L/(m2 h bar) and a water contact angle of 44.3 and 57.2°, respectively. Therefore, the membranes can be operated at low pressures with reasonable flux. Additionally, SEM images showed that the membranes were still open-pored. Adsorption tests using a positively and a negatively charged dye as well as a toxic cation and an anion were performed to analyze the adsorption behavior. Both membranes were able to adsorb the oppositely charged dyes as well as the copper and chromate ions. Therefore, these membranes are good candidates to purify water streams containing hazardous ions.

7.
Membranes (Basel) ; 12(4)2022 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-35448405

RÉSUMÉ

Assessing the financial impact of polymers of intrinsic microporosity, otherwise known as PIMs, at the lab scale has been impeded by the absence of a holistic approach that would envelop all related financial parameters, and most importantly any indirect costs, such as laboratory accidents that have been consistently neglected and undervalued in past assessments. To quantify the cost of PIMs in relation to the risks befalling a laboratory, an innovative cost evaluation approach was designed. This approach consists of three stages. Firstly, a two-fold "window of opportunity" (WO) theory is suggested, dividing the total cost profile into two segments, followed up by a qualitative risk analysis to establish the potential cost components. The last stage builds on a total cost of ownership model, incorporating the two types of WO. The total cost of ownership (TCO) approach was selected to ascertain the costs and construct the cost profile of PIMs, according to laboratory experimental data. This model was applied to the synthesis and physicochemical characterization processes. The quantitative analysis revealed that the most influential parameters for synthesis are accidents and energy costs. This is in contrast with the physicochemical characterization process, where the most important determinant is the energy cost.

8.
Polymers (Basel) ; 14(1)2021 Dec 29.
Article de Anglais | MEDLINE | ID: mdl-35012141

RÉSUMÉ

In the present work, a set of anthracene maleimide monomers with different aliphatic side groups obtained by Diels Alder reactions were used as precursors for a series of polymers of intrinsic microporosity (PIM) based homo- and copolymers that were successfully synthesized and characterized. Polymers with different sizes and shapes of aliphatic side groups were characterized by size-exclusion chromatography (SEC), (nuclear magnetic resonance) 1H-NMR, thermogravimetric (TG) analysis coupled with Fourier-Transform-Infrared (FTIR) spectroscopy (TG-FTIR) and density measurements. The TG-FTIR measurement of the monomer-containing methyl side group revealed that the maleimide group decomposes prior to the anthracene backbone. Thermal treatment of homopolymer methyl-100 thick film was conducted to establish retro-Diels Alder rearrangement of the homopolymer. Gas and water vapor transport properties of homopolymers and copolymers were investigated by time-lag measurements. Homopolymers with bulky side groups (i-propyl-100 and t-butyl-100) experienced a strong impact of these side groups in fractional free volume (FFV) and penetrant permeability, compared to the homopolymers with linear alkyl side chains. The effect of anthracene maleimide derivatives with a variety of aliphatic side groups on water vapor transport is discussed. The maleimide moiety increased the water affinity of the homopolymers. Phenyl-100 exhibited a high water solubility, which is related to a higher amount of aromatic rings in the polymer. Copolymers (methyl-50 and t-butyl-50) showed higher CO2 and CH4 permeability compared to PIM-1. In summary, the introduction of bulky substituents increased free volume and permeability whilst the maleimide moiety enhanced the water vapor affinity of the polymers.

9.
Membranes (Basel) ; 10(12)2020 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-33297532

RÉSUMÉ

Isoporous membranes can be prepared by a combination of self-assembly of amphiphilic block copolymers and the non-solvent induced phase separation process. As the general doctor-blade technique suffers from high consumption of expensive block copolymer, other methods to reduce its concentration in the casting solution are sought after. Decreasing the block copolymer concentration during membrane casting and applying the block copolymer solution on a support membrane to obtain ultrathin isoporous membrane layers with e.g., spraying techniques, can be an answer. In this work we focused on the question if upscaling of thin block copolymer membranes produced by spraying techniques is feasible. To upscale the spray coating process, three different approaches were pursued, namely air-brush, 1-fluid nozzles and 2-fluid nozzles as generally used in the coating industry. The different spraying systems were implemented successfully in a membrane casting machine. Thinking about future development of isoporous block copolymer membranes in application it was significant that a continuous preparation process can be realised combining spraying of thin layers and immersion of the thin block copolymer layers in water to ensure phase-separation. The system was tested using a solution of polystyrene-block-poly(4-vinylpyridine) diblock copolymer. A detailed examination of the spray pattern and its homogeneity was carried out. The limitations of this method are discussed.

10.
Materials (Basel) ; 12(19)2019 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-31561543

RÉSUMÉ

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.

11.
Nanomaterials (Basel) ; 9(8)2019 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-31426617

RÉSUMÉ

The purpose of this work is the structural analysis of graphene oxide (GO) and by means of a new structural model to answer the questions arising from the Lerf-Klinowski and the Lee structural models. Surface functional groups of GO layers and the oxidative debris (OD) stacked on them were investigated after OD was extracted. Analysis was performed successfully using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy (SSNMR), standardized Boehm potentiometric titration analysis, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that graphene oxide layers, as well as oxidative debris contain different functional groups such as phenolic -OH, ketone, lactone, carboxyl, quinone and epoxy. Based on these results, a new structural model for GO layers is proposed, which covers all spectroscopic data and explains the presence of the other oxygen functionalities besides carboxyl, phenolic -OH and epoxy groups.

12.
Polymers (Basel) ; 11(8)2019 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-31357493

RÉSUMÉ

The synthesis of polymers of intrinsic microporosity (PIM) modified with azide groups, the cross linkage by nitrene reaction and their performance as gas separation membranes are reported. The azide modification of the spirobisindane units in the polymer backbone was done by post functionalization of methylated spirobisindane containing polymers. These polymers differ in distribution and concentration of the azide group containing spirobisindane units by applying perfectly alternating and randomly distributed copolymers along the polymer chains. To investigate the influence of concentration of the azide groups, additionally the homopolymer of methylated spirobisindane was synthesized and subjected to identical treatments and characterizations as both copolymers. Cross linkage by nitrene reaction was examined by different temperature treatments at 150, 200, 250 and 300 °C. Characterization of the new polymers was performed by NMR, SEC and FT-IR. Furthermore, the crosslinking process was investigated by means of solid state NMR, TGA-FTIR, DSC and isoconversional kinetic analysis performed with TGA. Gas permeability of CO2, N2, CH4, H2 and O2 was determined by time lag experiments and ideal selectivities for several gas pairs were calculated. The two azide groups per repeating unit degrade during thermal treatments by release of nitrogen and form mechanically stable PIM networks, leading to an increase in gas permeability while selectivity remained nearly constant. Measured diffusivity and solubility coefficients revealed differences in the formation of free volume elements depending on distribution and concentration of the azide groups. Aging studies over about five months were performed and physical aging rates (ßP) were evaluated with regard to the concentration and distribution of curable azide functionalities. Subsequently, the enhanced sieving effect during aging resulted in membrane materials that surpassed the Robeson upper bound in selected gas pairs.

13.
Polymers (Basel) ; 12(1)2019 Dec 26.
Article de Anglais | MEDLINE | ID: mdl-31888039

RÉSUMÉ

In this paper, the formation of nanostructured triblock terpolymer polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA), polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA) membranes via block copolymer self-assembly followed by non-solvent-induced phase separation (SNIPS) is demonstrated. An increase in the hydrophilicity was observed after treatment of non-charged isoporous membranes from PS-b-P4VP-b-PSMA, through acidic hydrolysis of the hydrophobic poly(solketal methacrylate) PSMA block into a hydrophilic poly(glyceryl methacrylate) PGMA block, which contains two neighbored hydroxyl (-OH) groups per repeating unit. For the first time, PS-b-P4VP-b-PSMA triblock terpolymers with varying compositions were successfully synthesized by sequential living anionic polymerization. Composite membranes of PS-b-P4VP-b-PSMA and PS-b-P4VP-b-PGMA triblock terpolymers with ordered hexagonally packed cylindrical pores were developed. The morphology of the membranes was studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM). PS-b-P4VP-b-PSMA triblock terpolymer membranes were further treated with acid (1 M HCl) to get polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA). Notably, the pristine porous membrane structure could be maintained even after acidic hydrolysis. It was found that membranes containing hydroxyl groups (PS-b-P4VP-b-PGMA) show a stable and higher water permeance than membranes without hydroxyl groups (PS-b-P4VP-b-PSMA), what is due to the increase in hydrophilicity. The membrane properties were analyzed further by contact angle, protein retention, and adsorption measurements.

14.
Materials (Basel) ; 11(12)2018 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-30501063

RÉSUMÉ

Ecological considerations strongly necessitate the development of environmentally friendly antifouling paints. A promising alternative to biocide containing antifouling paints are fouling-release coatings, which are non-toxic and designed to prevent permanent attachment of marine organisms to the surface, due to their low surface energy. However, these coatings suffer from insufficient mechanical properties, which make them unsuitable for mechanically stressed surfaces e.g., on ship hulls. To overcome those obstacles, polydimethylsiloxane (PDMS)-polythiourethane (PTU) composites modified with tetrapodal shaped micro-nano ZnO particles (t-ZnO) were produced and characterized by evaluating the surface energy, mechanical properties, and fouling-release performance. Among all variations, PTU/1 wt.% PDMS composites with 1 wt.% t-ZnO particles possess superior properties for applications as fouling-release coatings for maritime purposes.

15.
Nanoscale Res Lett ; 13(1): 359, 2018 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-30421344

RÉSUMÉ

In this study, mixed matrix membranes (MMMs) consisting of graphene oxide (GO) and functionalized graphene oxide (FGO) incorporated in a polymer of intrinsic microporosity (PIM-1) serving as a polymer matrix have been fabricated by dip-coating method, and their single gas transport properties were investigated. Successfully surface-modified GOs were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The effect of FGO loading on MMM morphology and performance was investigated by varying the FGO content in polymer matrix from 9 to 84 wt.%. Use of high FGO content in the polymer matrix helped to reveal difference in interaction of functionalized fillers with PIM-1 and even to discuss the change of FGO stiffness and filler alignment to the membrane surface depending on functional group nature.

16.
Membranes (Basel) ; 8(3)2018 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-30082598

RÉSUMÉ

In this work we present a method to manufacture flat sheet membranes with a thin isoporous block copolymer (BCP) layer (thickness <3 µm) by profile roller coating (breadth: 30 cm) on top of a porous support membrane. Highly diluted BCP-solutions were used for this coating process. While we cast membranes with dimensions of 30 cm × 50 cm in this work, the procedure can easily be extended to endless dimensions in this roll to roll (R2R) process. The method offers the possibility to save >95% of BCP raw material compared to common doctor blade casting, by strongly decreasing the layer thickness to below 3 µm in combination with a highly open substructure. Additionally, we report a straightforward method to investigate the influence of the solvent evaporation time between coating and precipitation (phase inversion) on the membrane morphology using one sample only, which also ensures that all other influencing parameters remain constant.

17.
Membranes (Basel) ; 8(1)2018 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-29301312

RÉSUMÉ

This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K2B12H12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K2B12H12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K2B12H12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO2 and CH4.

18.
Polymers (Basel) ; 10(1)2018 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-30966089

RÉSUMÉ

In this work, mixed-matrix membranes (MMMs) for gas separation in the form of thick films were prepared via the combination of the polymer Matrimid® 5218 and activated carbons (AC). The AC particles had a mean particle size of 1.5 µm and a mean pore diameter of 1.9 nm. The films were prepared by slow solvent evaporation from casting solutions in chloroform, which had a varying polymer⁻AC ratio. It was possible to produce stable films with up to a content of 50 vol % of AC. Thorough characterization experiments were accomplished via differential scanning calorimetry and thermogravimetric analysis, while the morphology of the MMMs was also investigated via scanning electron microscopy. The gas transport properties were revealed by employing time-lag measurements for different pure gases as well as sorption balance experiments for the filler particles. It was found that defect free Matrimid® MMMs with AC were prepared and the increase of the filler content led to a higher effective permeability for different gases. The single gas selectivity αij of different gas pairs maintained stable values with the increase of AC content, regardless of the steep increase in the effective permeability of the pure gases. Estimation of the solubilities and the diffusivities of the Matrimid®, AC, and MMMs allowed for the explanation of the increasing permeabilities of the MMMs, with the increase of AC content by modelling.

19.
Polymers (Basel) ; 10(2)2018 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-30966255

RÉSUMÉ

The poly(ethylene glycol)-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine)/(Jeffamine®). The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (¹H-NMR), indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Single gas (H2, O2, N2, CO2, and CH4) transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.

20.
Article de Anglais | MEDLINE | ID: mdl-30687700

RÉSUMÉ

The production of biopharmaceutical proteins in plants offers many advantages over traditional expression platforms, including improved safety, greater scalability and lower upstream production costs. However, most products are retained within plant cells or the apoplastic space instead of being secreted into a liquid medium, so downstream processing necessarily involves tissue and cell disruption followed by the removal of abundant particles and host cell proteins (HCPs). We investigated whether ultrafiltration/diafiltration (UF/DF) can simplify the purification of the model recombinant protein cyanovirin-N (CVN), an ~ 11 kDa HIV-neutralizing lectin, from tobacco extracts prior to chromatography. We compared different membrane types and process conditions, and found that at pH 8.0 and 50 mS cm-1 an UF step using a 100 kDa regenerated cellulose membrane removed more than 80% of the ~ 0.75 mg mL-1 total soluble protein present in the clarified plant extract. We recovered ~ 70% of the CVN and the product purity increased ~ 3-fold in the permeate. The underlying effects of tobacco HCP retention during the UF/DF step were investigated by measuring the zeta potential and particle size distribution in the 2-10,000 nm range. Combined with a subsequent 10 kDa DF step, this approach simultaneously reduced the process volume, conditioned the process intermediate, and facilitated early, chromatography-free purification. Due to the generic, size-based nature of the method, it is likely to be compatible with most products smaller than ~50 kDa.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE