Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Rev Lett ; 107(25): 255003, 2011 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-22243084

RÉSUMÉ

The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

2.
Phys Rev Lett ; 102(16): 164801, 2009 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-19518716

RÉSUMÉ

To take full advantage of a laser-plasma accelerator, stability and control of the electron beam parameters have to be achieved. The external injection scheme with two colliding laser pulses is a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. In this Letter, it is shown that by tuning the optical injection parameters, one is able to control the phase-space volume of the injected particles, and thus the charge and the energy spread of the beam. With this method, the production of a laser accelerated electron beam of 10 pC at the 200 MeV level with a 1% relative energy spread at full width half maximum (3.1% rms) is demonstrated. This unique tunability extends the capability of laser-plasma accelerators and their applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE