Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Astrobiology ; 20(6): 766-784, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32167834

RÉSUMÉ

The detection of biosignatures on Mars is of outstanding interest in the current field of astrobiology and drives various fields of research, ranging from new sample collection strategies to the development of more sensitive detection techniques. Detailed analysis of the organic content in Mars analog materials collected from extreme environments on Earth improves the current understanding of biosignature preservation and detection under conditions similar to those of Mars. In this article, we examined the biological fingerprint of several locations in the Atacama Desert (Chile), which include different wet and dry, and intermediate to high elevation salt flats (also named salars). Liquid chromatography and multidimensional gas chromatography mass spectrometry measurement techniques were used for the detection and analysis of amino acids extracted from the salt crusts and sediments by using sophisticated extraction procedures. Illumina 16S amplicon sequencing was used for the identification of microbial communities associated with the different sample locations. Although amino acid load and organic carbon and nitrogen quantities were generally low, it was found that most of the samples harbored complex and versatile microbial communities, which were dominated by (extremely) halophilic microorganisms (most notably by species of the Archaeal family Halobacteriaceae). The dominance of salts (i.e., halites and sulfates) in the investigated samples leaves its mark on the composition of the microbial communities but does not appear to hinder the potential of life to flourish since it can clearly adapt to the higher concentrations. Although the Atacama Desert is one of the driest and harshest environments on Earth, it is shown that there are still sub-locations where life is able to maintain a foothold, and, as such, salt flats could be considered as interesting targets for future life exploration missions on Mars.


Sujet(s)
Climat désertique , Exobiologie , Environnement extraterrestre , Mars , Sol/composition chimique , Vol spatial , Acides aminés/analyse , Bactéries/génétique , Biodiversité , Carbone/analyse , Chili , Chromatographie en phase liquide , ADN/analyse , Chromatographie gazeuse-spectrométrie de masse , Géographie , Azote/analyse , Composés chimiques organiques/analyse , Phylogenèse , Analyse en composantes principales
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE