Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Microbiol ; 11: 748, 2020.
Article de Anglais | MEDLINE | ID: mdl-32425909

RÉSUMÉ

Patients with type 2 diabetes are at higher risk for periodontal disease and diabetic foot ulcer infections (DFUIs), the latter of which are predominantly caused by staphylococcal bacteria. Staphylococci have also been detected in the mouth, nose and gums (the oro-nasal cavity) of patients with periodontal disease and can move between the mouth and nose. The present study investigated if the oro-nasal cavity and/or periodontal pockets (PPs) in diseased gum tissue can provide a microbial reservoir for DFUIs. Eighteen patients with type 2 diabetes and at least three natural teeth (13 patients with ulcers and 5 patients without ulcers) underwent non-invasive microbiological sampling of PP, oro-nasal, skin and ulcer sites. Staphylococci were recovered using selective chromogenic agar, definitively identified and subjected to DNA microarray profiling, whole-genome sequencing and core-genome multilocus sequence typing (cgMLST). Staphylococcus aureus and Staphylococcus epidermidis were recovered from both the oro-nasal and ulcer sites of 6/13 and 5/13 patients with ulcers, respectively. Molecular typing based on the staphylococcal protein A (spa) gene and DNA microarray profiling indicated that for each patient investigated, S. aureus strains from oro-nasal and ulcer sites were identical. Comparative cgMLST confirmed that isolates from multiple anatomical sites of each individual investigated grouped into closely related, patient-distinct clusters (Clusters 1-7). Isolates belonging to the same cluster exhibited an average of 2.9 allelic differences (range 0-11). In contrast, reference genomes downloaded from GenBank selected as representatives of each sequence type identified in the present study exhibited an average of 227 allelic differences from the most closely related isolate within each cluster.

2.
Front Microbiol ; 9: 1558, 2018.
Article de Anglais | MEDLINE | ID: mdl-30050526

RÉSUMÉ

Staphylococcus aureus and Staphylococcus epidermidis are frequent commensals of the nares and skin and are considered transient oral residents. Reports on their prevalence in the oral cavity, periodontal pockets and subgingivally around infected oral implants are conflicting, largely due to methodological limitations. The prevalence of these species in the oral cavities, periodontal pockets and subgingival sites of orally healthy individuals with/without implants and in patients with periodontal disease or infected implants (peri-implantitis) was investigated using selective chromogenic agar and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Staphylococcus epidermidis was predominant in all participant groups investigated. Its prevalence was significantly higher (P = 0.0189) in periodontal pockets (30%) than subgingival sites of healthy individuals (7.8%), and in subgingival peri-implantitis sites (51.7%) versus subgingival sites around non-infected implants (16.1%) (P = 0.0057). In contrast, S. aureus was recovered from subgingival sites of 0-12.9% of the participant groups, but not from periodontal pockets. The arginine catabolic mobile element (ACME), thought to enhance colonization and survival of S. aureus, was detected in 100/179 S. epidermidis and 0/83 S. aureus isolates screened using multiplex PCR and DNA microarray profiling. Five distinct ACME types, including the recently described types IV and V (I; 14, II; 60, III; 10, IV; 15, V; 1) were identified. ACME-positive S. epidermidis were significantly (P = 0.0369) more prevalent in subgingival peri-implantitis sites (37.9%) than subgingival sites around non-infected implants (12.9%) and also in periodontal pockets (25%) compared to subgingival sites of healthy individuals (4.7%) (P = 0.0167). To investigate the genetic diversity of ACME, 35 isolates, representative of patient groups, sample sites and ACME types underwent whole genome sequencing from which multilocus sequence types (STs) were identified. Sequencing data permitted ACME types II and IV to be subdivided into subtypes IIa-c and IVa-b, respectively, based on distinct flanking direct repeat sequences. Distinct ACME types were commonly associated with specific STs, rather than health/disease states or recovery sites, suggesting that ACME types/subtypes originated amongst specific S. epidermidis lineages. Ninety of the ACME-positive isolates encoded the ACME-arc operon, which likely contributes to oral S. epidermidis survival in the nutrient poor, semi-anaerobic, acidic and inflammatory conditions present in periodontal disease and peri-implantitis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE