Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Gamme d'année
1.
J Hazard Mater ; 478: 135352, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39128155

RÉSUMÉ

In wastewater-based epidemiology, normalization of experimental data is a crucial aspect, as emerged in the recent surveillance of COVID-19. Normalization facilitates the comparison between different areas or periods, and it helps in evaluating the differences due to the fluctuation of the population due to seasonal employment or tourism. Analysis of biomarkers in wastewater (i.e. drugs, beverage and food compounds, microorganisms such as PMMoV or crAssphage, etc.) is complex to perform, and it is not routinely monitored. This study compares the results of alternative normalization approaches applied to SARS-CoV-2 loads in wastewater using population size calculated with conventional hydraulic and/or chemical parameters (i.e. total suspended solids, chemical oxygen demand, nitrogen forms, etc.) commonly used in the routine monitoring of water quality. A total of 12 wastewater treatment plants were monitored, and 1068 samples of influent wastewater were collected in urban areas and in highly touristic areas (summer and/or winter). The results indicated that both census and population estimated with ammonium are effective and reliable parameters with which to normalize SARS-CoV-2 loads in wastewater from urban sewersheds with negligible fluctuating populations. However, this study reveals that, in the case of tourist locations, the population calculated using NH4-N loads can provide a better normalization of the specific viral load per inhabitant.

2.
Chemosphere ; 359: 142328, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38740336

RÉSUMÉ

Considering the limited literature and the difficulty of quantifying 1-µm micro-nanoplastics (1-µm MNP) in complex aqueous matrices such as wastewater and sludge, the removal rate of these very small particles in wastewater treatment plants (WWTP) represents a major challenge. In this study, coagulation-flocculation-sedimentation (CFS) with aluminum salts was investigated to evaluate the removal of 1-µm MNPs spiked in tap water, raw wastewater, pre-settled wastewater, and activated sludge. Quantification of 1-µm MNP was performed using the high-throughput flow cytometry (FCM) analysis which takes only a few minutes and produces results with high accuracy and reproducibly. The results indicated that the 1-µm MNPs were highly stable in pure water and unable to settle rapidly. In raw wastewater, sedimentation without coagulants removed less than 4% of 1-µm MNP. Conversely, CFS treatment showed a significant improvement in the removal of 1-µm MNP from wastewater. At dosages of 0.3-3 mg Al3+/L, the removal of MNPs in wastewater reached 30% and no flocs were observed, while floc formation was visible with increased dosages of 3-12 mg Al3+/L, obtaining MNP removal greater than 90%. CFS in activated sludge with a solids content of 5800 mg MLSS/L registered the highest removal efficiency (95-99%) even for dosages of 0.3-60 mg Al3+/L and pH dropping to 5. However, activated sludge showed extremely high removal efficiency of MNPs (97.3 ± 0.9%) even without coagulants. The large, dense flocs that constitute activated sludge appear particularly efficient in capturing 1-µm MNPs during the sedimentation process even in the absence of coagulants.


Sujet(s)
Floculation , Cytométrie en flux , Microplastiques , Eaux d'égout , Élimination des déchets liquides , Eaux usées , Polluants chimiques de l'eau , Eaux d'égout/composition chimique , Eaux usées/composition chimique , Cytométrie en flux/méthodes , Microplastiques/analyse , Polluants chimiques de l'eau/analyse , Élimination des déchets liquides/méthodes
3.
Bioresour Technol ; 401: 130735, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38670293

RÉSUMÉ

Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.


Sujet(s)
Bactéries , Bioréacteurs , Microalgues , Azote , Eaux d'égout , Eaux usées , Eaux d'égout/microbiologie , Microalgues/métabolisme , Eaux usées/microbiologie , Eaux usées/composition chimique , Bioréacteurs/microbiologie , Bactéries/métabolisme , Consortiums microbiens/physiologie , Purification de l'eau/méthodes , Dénitrification , Élimination des déchets liquides/méthodes , Nitrification
4.
Eng. sanit. ambient ; 10(1): 14-23, jan.-mar. 2005. ilus, tab, graf
Article de Portugais | LILACS | ID: lil-406833

RÉSUMÉ

Este trabalho apresenta os atuais métodos respirométricos voltados ao controle biológico em geral, com técnicas desenvolvidas para a aplicação em tratamentos de águas residuárias, principalmente no controle de processos por lodos ativados e recentes desenvolvimentos do método para a aplicação em sistemas de tratamento por fitodepuração (Wetlands). Descreve novos métodos que foram desenvolvidos no Laboratorio di Ingegneria Sanitaria-Ambientale (LISA) da Università di Trento, Itália. Estes métodos baseiam-se em duas metodologias de laboratório para a aplicação da respirometria em fitoderuração: o primeiro caracteriza a atividade bacteriológica do solo com a finalidade de medir a concentração de O2 na fase gasosa, o outro avalia a concentração de O2 na fase aquosa.


Sujet(s)
Boues Activées , Eaux usées , Surveillance de l'environnement , Phénomènes biologiques , Monitorage de l'Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE