Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 43
Filtrer
1.
Trends Genet ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38910033

RÉSUMÉ

The emergence of aerobic respiration created unprecedented bioenergetic advantages, while imposing the need to protect critical genetic information from reactive byproducts of oxidative metabolism (i.e., reactive oxygen species, ROS). The evolution of histone proteins fulfilled the need to shield DNA from these potentially damaging toxins, while providing the means to compact and structure massive eukaryotic genomes. To date, several metabolism-linked histone post-translational modifications (PTMs) have been shown to regulate chromatin structure and gene expression. However, whether and how PTMs enacted by metabolically produced ROS regulate adaptive chromatin remodeling remain relatively unexplored. Here, we review novel mechanistic insights into the interactions of ROS with histones and their consequences for the control of gene expression regulation, cellular plasticity, and behavior.

2.
Mol Cell Biol ; 44(6): 209-225, 2024.
Article de Anglais | MEDLINE | ID: mdl-38779933

RÉSUMÉ

Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.


Sujet(s)
Centromère , Protéines chromosomiques nonhistones , Ségrégation des chromosomes , Protéine M1 à motif en tête de fourche , Kinétochores , Protéine M1 à motif en tête de fourche/métabolisme , Protéine M1 à motif en tête de fourche/génétique , Humains , Kinétochores/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines chromosomiques nonhistones/génétique , Centromère/métabolisme , Ségrégation des chromosomes/génétique , Lignée cellulaire tumorale , Mitose/génétique , Protéine A du centromère/métabolisme , Protéine A du centromère/génétique , Transcription génétique , Régulation de l'expression des gènes , Régulation de l'expression des gènes tumoraux , Chromatine/métabolisme , Chromatine/génétique , Régions promotrices (génétique)/génétique , Protéines des microfilaments
3.
bioRxiv ; 2023 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-37808683

RÉSUMÉ

Many Lamin A-associated proteins (LAAP's) that are key constituents of the nuclear envelope (NE), assemble at the "core" domains of chromosomes during NE reformation and mitotic exit. However, the identity and function of the chromosomal core domains remain ill-defined. Here, we show that a distinct section of the core domain overlaps with the centromeres/kinetochores of chromosomes during mitotic telophase. The core domain can thus be demarcated into a kinetochore proximal core (KPC) on one side of the segregated chromosomes and the kinetochore distal core (KDC) on the opposite side, close to the central spindle. We next tested if centromere assembly is connected to NE re-formation. We find that centromere assembly is markedly perturbed after inhibiting the function of LMNA and the core-localized LAAPs, BANF1 and Emerin. We also find that the LAAPs exhibit multiple biochemical interactions with the centromere and inner kinetochore proteins. Consistent with this, normal mitotic progression and chromosome segregation was severely impeded after inhibiting LAAP function. Intriguingly, the inhibition of centromere function also interferes with the assembly of LAAP components at the core domain, suggesting a mutual dependence of LAAP and centromeres for their assembly at the core domains. Finally, we find that the localization of key proteins involved in the centromeric loading of CENP-A, including the Mis18 complex and HJURP were markedly affected in LAAP-inhibited cells. Our evidence points to a model where LAAP assembly at the core domain serves a key function in loading new copies of centromeric proteins during or immediately after mitotic exit.

4.
J Cell Sci ; 136(10)2023 05 15.
Article de Anglais | MEDLINE | ID: mdl-37129573

RÉSUMÉ

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Sujet(s)
Protéines chromosomiques nonhistones , Histone , Humains , Histone/génétique , Protéine A du centromère/génétique , Cellules HeLa , Protéines chromosomiques nonhistones/génétique , Protéines chromosomiques nonhistones/métabolisme , Chromatine , Centromère/métabolisme , Chaperons moléculaires/métabolisme , Instabilité des chromosomes , Autoantigènes/génétique , Facteur-1 d'assemblage de la chromatine/génétique
5.
Mol Biol Cell ; 34(4): br5, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-36753381

RÉSUMÉ

Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.


Sujet(s)
Nucléole , Tumeurs , Animaux , Nucléole/métabolisme , Centromère , Noyau de la cellule/métabolisme , Mammifères , Tumeurs/métabolisme
6.
bioRxiv ; 2023 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-38234763

RÉSUMÉ

Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.

7.
Proc Natl Acad Sci U S A ; 119(27): e2111262119, 2022 07 05.
Article de Anglais | MEDLINE | ID: mdl-35776542

RÉSUMÉ

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.


Sujet(s)
Altération de l'ADN , Aptitude génétique , Protéines nucléaires , Stress physiologique , Motifs d'acides aminés , Animaux , Lignée cellulaire tumorale , Séquence conservée , Altération de l'ADN/génétique , Humains , Protéines nucléaires/composition chimique , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Domaines protéiques , Transduction du signal/génétique , Stress physiologique/génétique , Protéines suppresseurs de tumeurs/métabolisme , Ubiquitin-protein ligases/métabolisme
8.
EMBO J ; 40(24): e108307, 2021 12 15.
Article de Anglais | MEDLINE | ID: mdl-34786730

RÉSUMÉ

Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.


Sujet(s)
Autoantigènes/métabolisme , Histone/métabolisme , Protéines nucléaires/métabolisme , Ubiquitin-protein ligases/métabolisme , Lignée cellulaire , Cellules HEK293 , Cellules HeLa , Code histone , Histone/composition chimique , Humains , Nucléosomes/métabolisme , Domaines protéiques
9.
Mol Cell Biol ; 41(6): e0000721, 2021 05 21.
Article de Anglais | MEDLINE | ID: mdl-33753462

RÉSUMÉ

The eukaryotic genome is packaged into chromatin. The nucleosome, the basic unit of chromatin, is composed of DNA coiled around a histone octamer. Histones are among the longest-lived protein species in mammalian cells due to their thermodynamic stability and their associations with DNA and histone chaperones. Histone metabolism plays an integral role in homeostasis. While histones are largely stable, the degradation of histone proteins is necessary under specific conditions. Here, we review the physiological and cellular contexts that promote histone degradation. We describe specific known mechanisms that drive histone proteolysis. Finally, we discuss the importance of histone degradation and regulation of histone supply for organismal and cellular fitness.


Sujet(s)
Histone/métabolisme , Animaux , Différenciation cellulaire , Vieillissement de la cellule , Réplication de l'ADN , Chaperons d'histones/métabolisme , Humains , Stabilité protéique , Protéolyse
10.
J Cell Biol ; 220(4)2021 04 05.
Article de Anglais | MEDLINE | ID: mdl-33620383

RÉSUMÉ

Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore-microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A-overexpressing cancers.


Sujet(s)
Aneuploïdie , Protéine A du centromère/biosynthèse , Instabilité des chromosomes , Kinétochores/métabolisme , Micronoyaux à chromosomes défectueux , Protéines tumorales/métabolisme , Tumeurs/métabolisme , Animaux , Lignée cellulaire tumorale , Protéine A du centromère/génétique , Hétérogreffes , Humains , Kinétochores/anatomopathologie , Souris , Protéines tumorales/génétique , Transplantation tumorale , Tumeurs/génétique , Tumeurs/anatomopathologie
11.
Sci Adv ; 7(5)2021 01.
Article de Anglais | MEDLINE | ID: mdl-33571115

RÉSUMÉ

Ubiquitin protein ligase E3 component N-recognin 7 (UBR7) is the most divergent member of UBR box-containing E3 ubiquitin ligases/recognins that mediate the proteasomal degradation of its substrates through the N-end rule. Here, we used a proteomic approach and found phosphoribosyl pyrophosphate synthetases (PRPSs), the essential enzymes for nucleotide biosynthesis, as strong interacting partners of UBR7. UBR7 stabilizes PRPS catalytic subunits by mediating the polyubiquitination-directed degradation of PRPS-associated protein (PRPSAP), the negative regulator of PRPS. Loss of UBR7 leads to nucleotide biosynthesis defects. We define UBR7 as a transcriptional target of NOTCH1 and show that UBR7 is overexpressed in NOTCH1-driven T cell acute lymphoblastic leukemia (T-ALL). Impaired nucleotide biosynthesis caused by UBR7 depletion was concomitant with the attenuated cell proliferation and oncogenic potential of T-ALL. Collectively, these results establish UBR7 as a critical regulator of nucleotide metabolism through the regulation of the PRPS enzyme complex and uncover a metabolic vulnerability in NOTCH1-driven T-ALL.


Sujet(s)
Nucléotides , Leucémie-lymphome lymphoblastique à précurseurs T , Récepteur Notch1 , Ubiquitin-protein ligases , Humains , Nucléotides/biosynthèse , Leucémie-lymphome lymphoblastique à précurseurs T/génétique , Leucémie-lymphome lymphoblastique à précurseurs T/métabolisme , Protéomique , Récepteur Notch1/génétique , Récepteur Notch1/métabolisme , Lymphocytes T/anatomopathologie , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitination
12.
Curr Biol ; 29(22): R1194-R1196, 2019 11 18.
Article de Anglais | MEDLINE | ID: mdl-31743678

RÉSUMÉ

Human artificial chromosomes (HACs) are a potentially powerful technique for genomic engineering, but their use is limited by the repetitive centromeric alpha-satellite DNA needed to form a centromere. A new study presents a method to induce HAC centromere formation on non-repetitive templates through sequence-directed CENP-A nucleosome seeding.


Sujet(s)
Chromosomes artificiels humains , Centromère , Protéine A du centromère , Protéine B du centromère , ADN satellite , Humains
13.
Dev Cell ; 47(3): 348-362.e7, 2018 11 05.
Article de Anglais | MEDLINE | ID: mdl-30293838

RÉSUMÉ

Centromeric chromatin defines the site of kinetochore formation and ensures faithful chromosome segregation. Centromeric identity is epigenetically specified by the incorporation of CENP-A nucleosomes. DNA replication presents a challenge for inheritance of centromeric identity because nucleosomes are removed to allow for replication fork progression. Despite this challenge, CENP-A nucleosomes are stably retained through S phase. We used BioID to identify proteins transiently associated with CENP-A during DNA replication. We found that during S phase, HJURP transiently associates with centromeres and binds to pre-existing CENP-A, suggesting a distinct role for HJURP in CENP-A retention. We demonstrate that HJURP is required for centromeric nucleosome inheritance during S phase. HJURP co-purifies with the MCM2-7 helicase complex and, together with the MCM2 subunit, binds CENP-A simultaneously. Therefore, pre-existing CENP-A nucleosomes require an S phase function of the HJURP chaperone and interaction with MCM2 to ensure faithful inheritance of centromere identity through DNA replication.


Sujet(s)
Protéine A du centromère/métabolisme , Protéines de liaison à l'ADN/métabolisme , Nucléosomes/métabolisme , Centromère/métabolisme , Protéine A du centromère/génétique , Chromatine/métabolisme , Assemblage et désassemblage de la chromatine/physiologie , Protéines chromosomiques nonhistones/métabolisme , Ségrégation des chromosomes/physiologie , Réplication de l'ADN , Protéines de liaison à l'ADN/génétique , Épigénomique , Cellules HEK293 , Cellules HeLa , Histone/métabolisme , Humains , Kinétochores/métabolisme , Mitose/physiologie , Nucléosomes/génétique , Phase S
14.
Curr Opin Cell Biol ; 52: 126-135, 2018 06.
Article de Anglais | MEDLINE | ID: mdl-29621654

RÉSUMÉ

Accurate chromosome segregation is critical to ensure the faithful inheritance of the genome during cell division. Human chromosomes distinguish the location of the centromere from general chromatin by the selective assembly of CENP-A containing nucleosomes at the active centromere. The location of centromeres in most higher eukaryotes is determined epigenetically, independent of DNA sequence. CENP-A containing centromeric chromatin provides the foundation for assembly of the kinetochore that mediates chromosome attachment to the microtubule spindle and controls cell cycle progression in mitosis. Here we review recent work demonstrating the role of posttranslational modifications on centromere function and CENP-A inheritance via the direct modification of the CENP-A nucleosome and pre-nucleosomal complexes, the modification of the CENP-A deposition machinery and the modification of histones within existing centromeres.


Sujet(s)
Séquence nucléotidique/génétique , Mitose/génétique , Maturation post-traductionnelle des protéines/génétique , Humains
15.
Chromosoma ; 127(3): 279-290, 2018 09.
Article de Anglais | MEDLINE | ID: mdl-29569072

RÉSUMÉ

Centromeres are specialized chromosome domain that serve as the site for kinetochore assembly and microtubule attachment during cell division, to ensure proper segregation of chromosomes. In higher eukaryotes, the identity of active centromeres is marked by the presence of CENP-A (centromeric protein-A), a histone H3 variant. CENP-A forms a centromere-specific nucleosome that acts as a foundation for centromere assembly and function. The posttranslational modification (PTM) of histone proteins is a major mechanism regulating the function of chromatin. While a few CENP-A site-specific modifications are shared with histone H3, the majority are specific to CENP-A-containing nucleosomes, indicating that modification of these residues contribute to centromere-specific function. CENP-A undergoes posttranslational modifications including phosphorylation, acetylation, methylation, and ubiquitylation. Work from many laboratories have uncovered the importance of these CENP-A modifications in its deposition at centromeres, protein stability, and recruitment of the CCAN (constitutive centromere-associated network). Here, we discuss the PTMs of CENP-A and their biological relevance.


Sujet(s)
Protéine A du centromère/métabolisme , Maturation post-traductionnelle des protéines , Cycle cellulaire , Centromère/génétique , Centromère/métabolisme , Protéine A du centromère/composition chimique , Histone/métabolisme , Humains , Méthylation , Mitose/génétique , Liaison aux protéines , Spécificité d'espèce , Relation structure-activité
16.
Prog Mol Subcell Biol ; 56: 165-192, 2017.
Article de Anglais | MEDLINE | ID: mdl-28840237

RÉSUMÉ

Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.


Sujet(s)
Centromère/métabolisme , Nucléosomes/métabolisme , Centromère/composition chimique , Protéine A du centromère/métabolisme , Humains , Nucléosomes/composition chimique
17.
Oncotarget ; 8(29): 46781-46800, 2017 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-28596481

RÉSUMÉ

Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability.


Sujet(s)
Protéine A du centromère/métabolisme , Centromère/génétique , Centromère/métabolisme , Instabilité des chromosomes , Histone/métabolisme , Lignée cellulaire , Protéine A du centromère/génétique , Ségrégation des chromosomes , Diploïdie , Expression des gènes , Cellules HeLa , Histone/génétique , Humains , Kinétochores/métabolisme , Micronoyaux à chromosomes défectueux , Modèles biologiques , Tumeurs/génétique , Tumeurs/métabolisme , Phénotype , Liaison aux protéines
18.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-28481226

RÉSUMÉ

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Sujet(s)
Mégacaryocytes/physiologie , Protéines de liaison à l'ARN/physiologie , Animaux , Prolifération cellulaire , Femelle , Expression des gènes , Régulation de l'expression des gènes au cours du développement , Cellules HEK293 , Hématopoïèse , Cellules souches hématopoïétiques/physiologie , Humains , Nouveau-né , Cellules K562 , Souris de lignée C57BL , Activation de la transcription
19.
Nat Commun ; 8: 14678, 2017 03 07.
Article de Anglais | MEDLINE | ID: mdl-28266506

RÉSUMÉ

Centromeres are unique chromosomal domains that control chromosome segregation, and are epigenetically specified by the presence of the CENP-A containing nucleosomes. CENP-A governs centromere function by recruiting the constitutive centromere associated network (CCAN) complex. The features of the CENP-A nucleosome necessary to distinguish centromeric chromatin from general chromatin are not completely understood. Here we show that CENP-A undergoes α-amino trimethylation by the enzyme NRMT in vivo. We show that α-amino trimethylation of the CENP-A tail contributes to cell survival. Loss of α-amino trimethylation causes a reduction in the CENP-T and CENP-I CCAN components at the centromere and leads to lagging chromosomes and spindle pole defects. The function of p53 alters the response of cells to defects associated with decreased CENP-A methylation. Altogether we show an important functional role for α-amino trimethylation of the CENP-A nucleosome in maintaining centromere function and faithful chromosomes segregation.


Sujet(s)
Amines/métabolisme , Protéine A du centromère/métabolisme , Centromère/métabolisme , Methyltransferases/métabolisme , Animaux , Prolifération cellulaire , Survie cellulaire , Ségrégation des chromosomes , Cellules HCT116 , Cellules HeLa , Humains , Méthylation , Souris , Appareil du fuseau/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme
20.
Mol Biol Cell ; 28(1): 54-64, 2017 01 01.
Article de Anglais | MEDLINE | ID: mdl-27807043

RÉSUMÉ

Centromeric chromatin is required for kinetochore assembly during mitosis and accurate chromosome segregation. A unique nucleosome containing the histone H3-specific variant CENP-A is the defining feature of centromeric chromatin. In humans, CENP-A nucleosome deposition occurs in early G1 just after mitotic exit at the time when the CENP-A deposition machinery localizes to centromeres. The mechanism by which CENP-A is deposited onto an existing, condensed chromatin template is not understood. Here we identify the selective association of the CENP-A chaperone HJURP with the condensin II complex and not condensin I. We show CAPH2 is present at centromeres during early G1 at the time when CENP-A deposition is occurring. CAPH2 localization to early G1 centromeres is dependent on HJURP. The CENP-A chaperone and assembly factor HJURP induces decondensation of a noncentromeric LacO array, and this decondensation is modulated by the condensin II complex. We show that condensin II function at the centromere is required for new CENP-A deposition in human cells. These data demonstrate that HJURP selectively recruits the condensin II chromatin-remodeling complex to facilitate CENP-A deposition in human cells.


Sujet(s)
Autoantigènes/métabolisme , Centromère/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines de liaison à l'ADN/métabolisme , Adenosine triphosphatases/métabolisme , Protéine A du centromère , Chromatine/métabolisme , Assemblage et désassemblage de la chromatine/physiologie , Ségrégation des chromosomes/physiologie , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/physiologie , Phase G1 , Histone/métabolisme , Humains , Mitose , Complexes multiprotéiques/métabolisme , Nucléosomes , Liaison aux protéines/physiologie , Serine endopeptidases/métabolisme , Serine endopeptidases/physiologie , Succinate Dehydrogenase/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE