Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 42
Filtrer
1.
Sci Rep ; 14(1): 6758, 2024 03 21.
Article de Anglais | MEDLINE | ID: mdl-38514808

RÉSUMÉ

In this work, we use a simple multi-agent-based-model (MABM) of a social network, implementing selfish algorithm (SA) agents, to create an adaptive environment and show, using a modified diffusion entropy analysis (DEA), that the mutual-adaptive interaction between the parts of such a network manifests complexity synchronization (CS). CS has been shown to exist by processing simultaneously measured time series from among organ-networks (ONs) of the brain (neurophysiology), lungs (respiration), and heart (cardiovascular reactivity) and to be explained theoretically as a synchronization of the multifractal dimension (MFD) scaling parameters characterizing each time series. Herein, we find the same kind of CS in the emergent intelligence of groups formed in a self-organized social interaction without macroscopic control but with biased self-interest between two groups of agents playing an anti-coordination game. This computational result strongly suggests the existence of the same CS in real-world social phenomena and in human-machine interactions as that found empirically in ONs.


Sujet(s)
Algorithmes , Intelligence , Humains , Entropie
2.
Biophys J ; 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38402607

RÉSUMÉ

The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. Two of the ways brains encode spatial information are through head direction cells and grid cells. Brains use head direction cells to determine orientation, whereas grid cells consist of layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single head direction or grid. We want to capture this firing structure and use it to decode head direction and animal location from head direction and grid cell activity. Understanding, representing, and decoding these neural structures require models that encompass higher-order connectivity, more than the one-dimensional connectivity that traditional graph-based models provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network. Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the simplicial convolutional neural network is demonstrated on head direction and trajectory prediction via head direction and grid cell datasets.

3.
Entropy (Basel) ; 25(10)2023 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-37895514

RÉSUMÉ

The transdisciplinary nature of science as a whole became evident as the necessity for the complex nature of phenomena to explain social and life science, along with the physical sciences, blossomed into complexity theory and most recently into complexitysynchronization. This science motif is based on the scaling arising from the 1/f-variability in complex dynamic networks and the need for a network of networks to exchange information internally during intra-network dynamics and externally during inter-network dynamics. The measure of complexity adopted herein is the multifractal dimension of the crucial event time series generated by an organ network, and the difference in the multifractal dimensions of two organ networks quantifies the relative complexity between interacting complex networks. Information flows from dynamic networks at a higher level of complexity to those at lower levels of complexity, as summarized in the 'complexity matching effect', and the flow is maximally efficient when the complexities are equal. Herein, we use the scaling of empirical datasets from the brain, cardiovascular and respiratory networks to support the hypothesis that complexity synchronization occurs between scaling indices or equivalently with the matching of the time dependencies of the networks' multifractal dimensions.

4.
Sci Rep ; 13(1): 11433, 2023 07 15.
Article de Anglais | MEDLINE | ID: mdl-37454210

RÉSUMÉ

Herein we address the measurable consequences of the network effect (NE) on time series generated by different parts of the brain, heart, and lung organ-networks (ONs), which are directly related to their inter-network and intra-network interactions. Moreover, these same physiologic ONs have been shown to generate crucial event (CE) time series, and herein are shown, using modified diffusion entropy analysis (MDEA) to have scaling indices with quasiperiodic changes in complexity, as measured by scaling indices, over time. Such time series are generated by different parts of the brain, heart, and lung ONs, and the results do not depend on the underlying coherence properties of the associated time series but demonstrate a generalized synchronization of complexity. This high-order synchrony among the scaling indices of EEG (brain), ECG (heart), and respiratory time series is governed by the quantitative interdependence of the multifractal behavior of the various physiological ONs' dynamics. This consequence of the NE opens the door for an entirely general characterization of the dynamics of complex networks in terms of complexity synchronization (CS) independently of the scientific, engineering, or technological context. CS is truly a transdisciplinary effect.


Sujet(s)
Encéphale , Poumon , Encéphale/physiologie
5.
Brain Behav ; 13(7): e3069, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37221980

RÉSUMÉ

INTRODUCTION: Detrended fluctuation analysis (DFA) is a well-established method to evaluate scaling indices of time series, which categorize the dynamics of complex systems. In the literature, DFA has been used to study the fluctuations of reaction time Y(n) time series, where n is the trial number. METHODS: Herein we propose treating each reaction time as a duration time that changes the representation from operational (trial number) time n to event (temporal) time t, or X(t). The DFA algorithm was then applied to the X(t) time series to evaluate scaling indices. The dataset analyzed is based on a Go-NoGo shooting task that was performed by 30 participants under low and high time-stress conditions in each of six repeated sessions over a 3-week period. RESULTS: This new perspective leads to quantitatively better results in (1) differentiating scaling indices between low versus high time-stress conditions and (2) predicting task performance outcomes. CONCLUSION: We show that by changing from operational time to event time, the DFA allows discrimination of time-stress conditions and predicts performance outcomes.


Sujet(s)
Facteurs temps , Humains , Temps de réaction
6.
Neural Netw ; 149: 204-216, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35248810

RÉSUMÉ

Neural activity emerges and propagates swiftly between brain areas. Investigation of these transient large-scale flows requires sophisticated statistical models. We present a method for assessing the statistical confidence of event-related neural propagation. Furthermore, we propose a criterion for statistical model selection, based on both goodness of fit and width of confidence intervals. We show that event-related causality (ERC) with two-dimensional (2D) moving average, is an efficient estimator of task-related neural propagation and that it can be used to determine how different cognitive task demands affect the strength and directionality of neural propagation across human cortical networks. Using electrodes surgically implanted on the surface of the brain for clinical testing prior to epilepsy surgery, we recorded electrocorticographic (ECoG) signals as subjects performed three naming tasks: naming of ambiguous and unambiguous visual objects, and as a contrast, naming to auditory description. ERC revealed robust and statistically significant patterns of high gamma activity propagation, consistent with models of visually and auditorily cued word production. Interestingly, ambiguous visual stimuli elicited more robust propagation from visual to auditory cortices relative to unambiguous stimuli, whereas naming to auditory description elicited propagation in the opposite direction, consistent with recruitment of modalities other than those of the stimulus during object recognition and naming. The new method introduced here is uniquely suitable to both research and clinical applications and can be used to estimate the statistical significance of neural propagation for both cognitive neuroscientific studies and functional brain mapping prior to resective surgery for epilepsy and brain tumors.


Sujet(s)
Électroencéphalographie , Épilepsie , Encéphale , Cartographie cérébrale/méthodes , Électroencéphalographie/méthodes , Épilepsie/chirurgie , Humains ,
7.
Front Comput Neurosci ; 14: 81, 2020.
Article de Anglais | MEDLINE | ID: mdl-33013344

RÉSUMÉ

Large cortical and hippocampal pyramidal neurons are elements of neuronal circuitry that have been implicated in cross-frequency coupling (CFC) during cognitive tasks. We investigate potential mechanisms for CFC within these neurons by examining the role that the hyperpolarization-activated mixed cation current (Ih) plays in modulating CFC characteristics in multicompartment neuronal models. We quantify CFC along the soma-apical dendrite axis and tuft of three models configured to have different spatial distributions of Ih conductance density: (1) exponential gradient along the soma-apical dendrite axis, (2) uniform distribution, and (3) no Ih conductance. We simulated two current injection scenarios: distal apical 4 Hz modulation and perisomatic 4 Hz modulation, each with perisomatic, mid-apical, and distal apical 40 Hz injections. We used two metrics to quantify CFC strength-modulation index and height ratio-and we analyzed CFC phase properties. For all models, CFC was strongest in distal apical regions when the 40 Hz injection occurred near the soma and the 4 Hz modulation occurred in distal apical dendrite. The strongest CFC values were observed in the model with uniformly distributed Ih conductance density, but when the exponential gradient in Ih conductance density was added, CFC strength decreased by almost 50%. When Ih was in the model, regions with much larger membrane potential fluctuations at 4 Hz than at 40 Hz had stronger CFC. Excluding the Ih conductance from the model resulted in CFC either reduced or comparable in strength relative to the model with the exponential gradient in Ih conductance. The Ih conductance also imposed order on the phase characteristics of CFC such that minimum (maximum) amplitude 40 Hz membrane potential oscillations occurred during Ih conductance deactivation (activation). On the other hand, when there was no Ih conductance, phase relationships between minimum and maximum 40 Hz oscillation often inverted and occurred much closer together. This analysis can help experimentalists discriminate between CFC that originates from different underlying physiological mechanisms and can help illuminate the reasons why there are differences between CFC strength observed in different regions of the brain and between different populations of neurons based on the configuration of the Ih conductance.

8.
Front Neuroinform ; 13: 69, 2019.
Article de Anglais | MEDLINE | ID: mdl-31803040

RÉSUMÉ

In this paper, we evaluate the computational performance of the GEneral NEural SImulation System (GENESIS) for large scale simulations of neural networks. While many benchmark studies have been performed for large scale simulations with leaky integrate-and-fire neurons or neuronal models with only a few compartments, this work focuses on higher fidelity neuronal models represented by 50-74 compartments per neuron. After making some modifications to the source code for GENESIS and its parallel implementation, PGENESIS, particularly to improve memory usage, we find that PGENESIS is able to efficiently scale on supercomputing resources to network sizes as large as 9 × 106 neurons with 18 × 109 synapses and 2.2 × 106 neurons with 45 × 109 synapses. The modifications to GENESIS that enabled these large scale simulations have been incorporated into the May 2019 Official Release of PGENESIS 2.4 available for download from the GENESIS web site (genesis-sim.org).

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 255-258, 2018 Jul.
Article de Anglais | MEDLINE | ID: mdl-30440386

RÉSUMÉ

There is growing evidence from human intracranial electrocorticography (ECoG) studies that interactions between cortical frequencies are important for sensory perception, cognition and inter-regional neuronal communication. Recent studies have focused mainly on the strength of phase-amplitude coupling in cross-frequency interactions. Here, we introduce a complex modulation method based on measures of coherence to investigate cross-frequency coupling in the neural time series. This novel approach uses complex demodulation transform and coherence measures from the transformed signals. We used this method to quantify power coupling between two cortical frequency bands: theta (47 Hz) and high gamma (70-150 Hz) in ECoG signals recorded during an auditory task. We compared complex modulation results with traditional phase-amplitude coupling measures (PAC) derived from the same ECoG dataset. Our results suggest that cross-frequency coupling may involve changes in both phase-amplitude and power relationships between frequencies, reflecting the complexity of neuronal oscillatory interactions.


Sujet(s)
Électrocorticographie , Neurones , Cognition , Humains
10.
Front Comput Neurosci ; 12: 29, 2018.
Article de Anglais | MEDLINE | ID: mdl-29780316

RÉSUMÉ

Evidence suggests that layer 5 pyramidal neurons can be divided into functional zones with unique afferent connectivity and membrane characteristics that allow for post-synaptic integration of feedforward and feedback inputs. To assess the existence of these zones and their interaction, we characterized the resonance properties of a biophysically-realistic compartmental model of a neocortical layer 5 pyramidal neuron. Consistent with recently published theoretical and empirical findings, our model was configured to have a "hot zone" in distal apical dendrite and apical tuft where both high- and low-threshold Ca2+ ionic conductances had densities 1-2 orders of magnitude higher than anywhere else in the apical dendrite. We simulated injection of broad spectrum sinusoidal currents with linearly increasing frequency to calculate the input impedance of individual compartments, the transfer impedance between the soma and key compartments within the dendritic tree, and a dimensionless term we introduce called resonance quality. We show that input resonance analysis distinguished at least four distinct zones within the model based on properties of their frequency preferences: basal dendrite which displayed little resonance; soma/proximal apical dendrite which displayed resonance at 5-23 Hz, strongest at 5-10 Hz and hyperpolarized/resting membrane potentials; distal apical dendrite which displayed resonance at 8-19 Hz, strongest at 10 Hz and depolarized membrane potentials; and apical tuft which displayed a weak resonance largely between 8 and 10 Hz across a wide range of membrane potentials. Transfer resonance analysis revealed that changes in subthreshold electrical coupling were found to modulate the transfer resonant frequency of signals transmitted from distal apical dendrite and apical tuft to the soma, which would impact the frequencies that individual neurons are expected to respond to and reinforce. Furthermore, eliminating the hot zone was found to reduce amplification of resonance within the model, which contributes to reduced excitability when perisomatic and distal apical regions receive coincident stimulating current injections. These results indicate that the interactions between different functional zones should be considered in a more complete understanding of neuronal integration. Resonance analysis may therefore be a useful tool for assessing the integration of inputs across the entire neuronal membrane.

11.
Behav Neurosci ; 132(1): 23-33, 2018 Feb.
Article de Anglais | MEDLINE | ID: mdl-29389145

RÉSUMÉ

When humans perform prolonged, continuous tasks, their performance fluctuates. The etiology of these fluctuations is multifactorial, but they are influenced by changes in attention reflected in underlying neural dynamics. Previous work with electroencephalography has suggested that prestimulus alpha power is a neural signature of attention allocation with higher power portending relatively poorer performance. The functional mechanisms subserving these changes in alpha power and behavior are postulated to be the result of networked neural activity that permits flexibility in the allocation of attention. Here, we directly examine the similarity between prestimulus alpha connectivity and power in relation to performance fluctuations in a continuous driving task. Participants were asked to maintain their vehicle in the center of a simulated highway, and we evaluated their performance by randomly perturbing the vehicle and assessing their steering correction. We then used the 3 seconds of neural activity before the unexpected event to derive alpha functional connectivity in the first analysis and alpha power in the second analysis, and we employed linear regression to separately investigate their relationship to 3 metrics of driving performance (lane deviation, reaction time (RT), and heading error). We find that the locations involved in our network analysis also show the strongest modulation of alpha activity. Interestingly, the network pattern suggests a posterior to anterior directionality, consistent with bottom-up theories of attention, and these results may reflect a gain control model of attention in which ongoing attention is modulated through coordinated, network activity. (PsycINFO Database Record


Sujet(s)
Rythme alpha/physiologie , Attention/physiologie , Conduite automobile , Encéphale/physiologie , Perception de l'espace/physiologie , Perception visuelle/physiologie , Adulte , Simulation numérique , Humains , Mâle , Voies nerveuses/physiologie , Temps de réaction
12.
Front Neurol ; 8: 236, 2017.
Article de Anglais | MEDLINE | ID: mdl-28638364

RÉSUMÉ

Within multiscale brain dynamics, the structure-function relationship between cellular changes at a lower scale and coordinated oscillations at a higher scale is not well understood. This relationship may be particularly relevant for understanding functional impairments after a mild traumatic brain injury (mTBI) when current neuroimaging methods do not reveal morphological changes to the brain common in moderate to severe TBI such as diffuse axonal injury or gray matter lesions. Here, we created a physiology-based model of cerebral cortex using a publicly released modeling framework (GEneral NEural SImulation System) to explore the possibility that performance deficits characteristic of blast-induced mTBI may reflect dysfunctional, local network activity influenced by microscale neuronal damage at the cellular level. We operationalized microscale damage to neurons as the formation of pores on the neuronal membrane based on research using blast paradigms, and in our model, pores were simulated by a change in membrane conductance. We then tracked changes in simulated electrical activity. Our model contained 585 simulated neurons, comprised of 14 types of cortical and thalamic neurons each with its own compartmental morphology and electrophysiological properties. Comparing the functional activity of neurons before and after simulated damage, we found that simulated pores in the membrane reduced both action potential generation and local field potential (LFP) power in the 1-40 Hz range of the power spectrum. Furthermore, the location of damage modulated the strength of these effects: pore formation on simulated axons reduced LFP power more strongly than did pore formation on the soma and the dendrites. These results indicate that even small amounts of cellular damage can negatively impact functional activity of larger scale oscillations, and our findings suggest that multiscale modeling provides a promising avenue to elucidate these relationships.

13.
J Neurosci Methods ; 279: 60-71, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28109833

RÉSUMÉ

BACKGROUND: During an experimental session, behavioral performance fluctuates, yet most neuroimaging analyses of functional connectivity derive a single connectivity pattern. These conventional connectivity approaches assume that since the underlying behavior of the task remains constant, the connectivity pattern is also constant. NEW METHOD: We introduce a novel method, behavior-regressed connectivity (BRC), to directly examine behavioral fluctuations within an experimental session and capture their relationship to changes in functional connectivity. This method employs the weighted phase lag index (WPLI) applied to a window of trials with a weighting function. Using two datasets, the BRC results are compared to conventional connectivity results during two time windows: the one second before stimulus onset to identify predictive relationships, and the one second after onset to capture task-dependent relationships. RESULTS: In both tasks, we replicate the expected results for the conventional connectivity analysis, and extend our understanding of the brain-behavior relationship using the BRC analysis, demonstrating subject-specific BRC maps that correspond to both positive and negative relationships with behavior. Comparison with Existing Method(s): Conventional connectivity analyses assume a consistent relationship between behaviors and functional connectivity, but the BRC method examines performance variability within an experimental session to understand dynamic connectivity and transient behavior. CONCLUSION: The BRC approach examines connectivity as it covaries with behavior to complement the knowledge of underlying neural activity derived from conventional connectivity analyses. Within this framework, BRC may be implemented for the purpose of understanding performance variability both within and between participants.


Sujet(s)
Comportement/physiologie , Cartographie cérébrale/méthodes , Encéphale/physiologie , Électroencéphalographie/méthodes , Traitement du signal assisté par ordinateur , /physiologie , Doigts/physiologie , Humains , Voies nerveuses/physiologie , Tests neuropsychologiques , Reconnaissance visuelle des formes/physiologie , Analyse de régression , Facteurs temps
14.
IEEE Trans Biomed Eng ; 64(9): 2276-2287, 2017 09.
Article de Anglais | MEDLINE | ID: mdl-27893379

RÉSUMÉ

OBJECTIVE: In this paper, we present and test a new method for the identification and removal of nonstationary utility line noise from biomedical signals. METHODS: The method, band limited atomic sampling with spectral tuning (BLASST), is an iterative approach that is designed to 1) fit nonstationarities in line noise by searching for best-fit Gabor atoms at predetermined time points, 2) self-modulate its fit by leveraging information from frequencies surrounding the target frequency, and 3) terminate based on a convergence criterion obtained from the same surrounding frequencies. To evaluate the performance of the proposed algorithm, we generate several simulated and real instances of nonstationary line noise and test BLASST along with alternative filtering approaches. RESULTS: We find that BLASST is capable of fitting line noise well and/or preserving local signal features relative to tested alternative filtering techniques. CONCLUSION: BLASST may present a useful alternative to bandpass, notch, or other filtering methods when experimentally relevant features have significant power in a spectrum that is contaminated by utility line noise, or when the line noise in question is highly nonstationary. SIGNIFICANCE: This is of particular significance in electroencephalography experiments, where line noise may be present in the frequency bands of neurological interest and measurements are typically of low enough strength that induced line noise can dominate the recorded signals. In conjunction with this paper, the authors have released a MATLAB toolbox that performs BLASST on real, vector-valued signals (available at https://github.com/VisLab/blasst).


Sujet(s)
Algorithmes , Artéfacts , Interprétation statistique de données , Électricité , Électroencéphalographie/méthodes , Traitement du signal assisté par ordinateur , Humains , Reproductibilité des résultats , Sensibilité et spécificité
15.
J Neural Eng ; 12(4): 046016, 2015 Aug.
Article de Anglais | MEDLINE | ID: mdl-26061006

RÉSUMÉ

OBJECTIVE: The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the [Formula: see text] Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. APPROACH: We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. MAIN RESULTS: We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately [Formula: see text]. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. SIGNIFICANCE: This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.


Sujet(s)
Potentiels d'action , Encéphale/physiopathologie , Modèles neurologiques , Réseau nerveux/physiopathologie , Neurones , Crises épileptiques/physiopathologie , Cartographie cérébrale/méthodes , Simulation numérique , Électroencéphalographie/méthodes , Femelle , Humains , Mâle , Reproductibilité des résultats , Sensibilité et spécificité
16.
Proc Natl Acad Sci U S A ; 112(9): 2871-5, 2015 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-25730850

RÉSUMÉ

For over a century neuroscientists have debated the dynamics by which human cortical language networks allow words to be spoken. Although it is widely accepted that Broca's area in the left inferior frontal gyrus plays an important role in this process, it was not possible, until recently, to detail the timing of its recruitment relative to other language areas, nor how it interacts with these areas during word production. Using direct cortical surface recordings in neurosurgical patients, we studied the evolution of activity in cortical neuronal populations, as well as the Granger causal interactions between them. We found that, during the cued production of words, a temporal cascade of neural activity proceeds from sensory representations of words in temporal cortex to their corresponding articulatory gestures in motor cortex. Broca's area mediates this cascade through reciprocal interactions with temporal and frontal motor regions. Contrary to classic notions of the role of Broca's area in speech, while motor cortex is activated during spoken responses, Broca's area is surprisingly silent. Moreover, when novel strings of articulatory gestures must be produced in response to nonword stimuli, neural activity is enhanced in Broca's area, but not in motor cortex. These unique data provide evidence that Broca's area coordinates the transformation of information across large-scale cortical networks involved in spoken word production. In this role, Broca's area formulates an appropriate articulatory code to be implemented by motor cortex.


Sujet(s)
Aire de Broca/physiologie , Réseau nerveux/physiologie , Parole/physiologie , Adolescent , Adulte , Femelle , Humains , Mâle , Cortex moteur/physiologie
17.
J Neurophysiol ; 112(11): 3001-11, 2014 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-25210164

RÉSUMÉ

High-gamma activity, ranging in frequency between ∼60 Hz and 200 Hz, has been observed in local field potential, electrocorticography, EEG and magnetoencephalography signals during cortical activation, in a variety of functional brain systems. The origin of these signals is yet unknown. Using computational modeling, we show that a cortical network model receiving thalamic input generates high-gamma responses comparable to those observed in local field potential recorded in monkey somatosensory cortex during vibrotactile stimulation. These high-gamma oscillations appear to be mediated mostly by an excited population of inhibitory fast-spiking interneurons firing at high-gamma frequencies and pacing excitatory regular-spiking pyramidal cells, which fire at lower rates but in phase with the population rhythm. The physiological correlates of high-gamma activity, in this model of local cortical circuits, appear to be similar to those proposed for hippocampal ripples generated by subsets of interneurons that regulate the discharge of principal cells.


Sujet(s)
Rythme gamma , Neurones afférents/physiologie , Cellules pyramidales/physiologie , Cortex somatosensoriel/physiologie , Animaux , Femelle , Macaca mulatta , Mâle , Modèles neurologiques , Cortex somatosensoriel/cytologie , Toucher , Vibration
18.
Clin Neurophysiol ; 124(1): 70-82, 2013 Jan.
Article de Anglais | MEDLINE | ID: mdl-22771035

RÉSUMÉ

OBJECTIVE: To evaluate the test-retest reliability of event-related power changes in the 30-150 Hz gamma frequency range occurring in the first 150 ms after presentation of an auditory stimulus. METHODS: Repeat intracranial electrocorticographic (ECoG) recordings were performed with 12 epilepsy patients, at ≥1-day intervals, using a passive odd-ball paradigm with steady-state tones. Time-frequency matching pursuit analysis was used to quantify changes in gamma-band power relative to pre-stimulus baseline. Test-retest reliability was estimated based on within-subject comparisons (paired t-test, McNemar's test) and correlations (Spearman rank correlations, intra-class correlations) across sessions, adjusting for within-session variability. Reliability estimates of gamma-band response robustness, spatial concordance, and reproducibility were compared with corresponding measurements from concurrent auditory evoked N1 responses. RESULTS: All patients showed increases in gamma-band power, 50-120 ms post-stimulus onset, that were highly robust across recordings, comparable to the evoked N1 responses. Gamma-band responses occurred regardless of patients' performance on behavioral tests of auditory processing, medication changes, seizure focus, or duration of test-retest interval. Test-retest reproducibility was greatest for the timing of peak power changes in the high-gamma range (65-150 Hz). Reliability of low-gamma responses and evoked N1 responses improved at higher signal-to-noise levels. CONCLUSIONS: Early cortical auditory gamma-band responses are robust, spatially concordant, and reproducible over time. SIGNIFICANCE: These test-retest ECoG results confirm the reliability of auditory gamma-band responses, supporting their utility as objective measures of cortical processing in clinical and research studies.


Sujet(s)
Stimulation acoustique , Cortex auditif/physiologie , Électroencéphalographie , Adolescent , Adulte , Âge de début , Craniotomie , Électrodes implantées , Potentiels évoqués auditifs/physiologie , Femelle , Latéralité fonctionnelle/physiologie , Humains , Imagerie par résonance magnétique , Mâle , Adulte d'âge moyen , Reproductibilité des résultats , Crises épileptiques/physiopathologie , Perception de la parole/physiologie , Jeune adulte
19.
Epilepsy Res ; 99(3): 202-13, 2012 May.
Article de Anglais | MEDLINE | ID: mdl-22169211

RÉSUMÉ

Seizure prediction has proven to be difficult in clinically realistic environments. Is it possible that fluctuations in cortical firing could influence the onset of seizures in an ictal zone? To test this, we have now used neural network simulations in a computational model of cortex having a total of 65,536 neurons with intercellular wiring patterned after histological data. A spatially distributed Poisson driven background input representing the activity of neighboring cortex affected 1% of the neurons. Gamma distributions were fit to the interbursting phase intervals, a non-parametric test for randomness was applied, and a dynamical systems analysis was performed to search for period-1 orbits in the intervals. The non-parametric analysis suggests that intervals are being drawn at random from their underlying joint distribution and the dynamical systems analysis is consistent with a nondeterministic dynamical interpretation of the generation of bursting phases. These results imply that in a region of cortex with abnormal connectivity analogous to a seizure focus, it is possible to initiate seizure activity with fluctuations of input from the surrounding cortical regions. These findings suggest one possibility for ictal generation from abnormal focal epileptic networks. This mechanism additionally could help explain the difficulty in predicting partial seizures in some patients.


Sujet(s)
Simulation numérique , Épilepsie/diagnostic , Épilepsie/physiopathologie , , Cortex cérébral/physiopathologie , Épilepsie/anatomopathologie , Valeur prédictive des tests , Cellules pyramidales/anatomopathologie , Répartition aléatoire
20.
Cereb Cortex ; 22(4): 918-25, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-21715651

RÉSUMÉ

Language processing requires the orchestrated action of different neuronal populations, and some studies suggest that the role of the basal temporal (BT) cortex in language processing is bilaterally distributed. Our aim was to demonstrate connectivity between perisylvian cortex and both BT areas. We recorded corticocortical evoked potentials (CCEPs) in 8 patients with subdural electrodes implanted for surgical evaluation of intractable epilepsy. Four patients had subdural grids over dominant perisylvian and BT areas, and 4 had electrode strips over both BT areas and left posterior superior temporal gyrus (LPSTG). After electrocortical mapping, patients with grids had 1-Hz stimulation of language areas. Patients with strips did not undergo mapping but had 1-Hz stimulation of the LPSTG. Posterior language area stimulation elicited CCEPs in ipsilateral BT cortex in 3/4 patients with left hemispheric grids. CCEPs were recorded in bilateral BT cortices in 3/4 patients with strips upon stimulation of the LPSTG, and in the LPSTG in the fourth patient upon stimulation of either BT area. This is the first in vivo demonstration of connectivity between LPSTG and both BT cortices. The role of BT cortex in language processing may be bilaterally distributed and related to linking visual information with phonological representations stored in the LPSTG.


Sujet(s)
Cartographie cérébrale , Cortex cérébral/physiopathologie , Dominance cérébrale/physiologie , Langage , Voies nerveuses/physiopathologie , Adulte , Cortex cérébral/anatomopathologie , Stimulation électrique , Électrodes implantées , Épilepsie/anatomopathologie , Potentiels évoqués/physiologie , Femelle , Humains , Mâle , Réseau nerveux/anatomopathologie , Réseau nerveux/physiopathologie , Temps de réaction/physiologie , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...