Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-38782254

RÉSUMÉ

Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.


Sujet(s)
Calcium , Protéines du muscle , Protéolipides , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thermogenèse , Animaux , Sarcoplasmic Reticulum Calcium-Transporting ATPases/génétique , Sarcoplasmic Reticulum Calcium-Transporting ATPases/métabolisme , Protéolipides/génétique , Protéolipides/métabolisme , Protéines du muscle/génétique , Protéines du muscle/métabolisme , Thermogenèse/génétique , Calcium/métabolisme , Protéines de poisson/génétique , Protéines de poisson/métabolisme , Muscles squelettiques/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Perciformes/génétique , Perciformes/physiologie , Perciformes/métabolisme , Thon/génétique , Thon/métabolisme , Thon/physiologie
2.
Article de Anglais | MEDLINE | ID: mdl-30946978

RÉSUMÉ

Sarcolipin (SLN) is a small transmembrane protein that in mice has been shown to uncouple the calcium ATPase pump of the sarcoplasmic reticulum, resulting in heat production. Mice up-regulate expression of SLN in response to cold challenge. This thermoregulatory mechanism is characterized as non-shivering muscle-based thermogenesis (NST). The current study was conducted to determine if the endothermic fish species, the smalleye opah (Lampris incognitus), has higher levels of sln transcription in tissues thought to be the main source of endothermic heat, namely the red aerobic pectoral fin musculature, which powers continuous swimming in this species. A search of the draft assembly of the opah genome reveals a single sln gene that is 95% identical to the zebrafish sln ortholog at the amino acid level. Quantitative PCR (qPCR) using opah-specific sln shows significantly higher sln transcript levels in the dark red pectoral fin muscle compared to both the light red pectoral muscle and white axial muscle tissues. The high ratio of sln transcripts to CaATPase (serca1) transcripts suggests that opah may utilize a futile calcium cycling NST mechanism in the dark red pectoral fin muscle to generate heat.


Sujet(s)
Régulation de la température corporelle/génétique , Calcium-Transporting ATPases/génétique , Poissons/génétique , Protéines du muscle/génétique , Protéolipides/génétique , Animaux , Calcium-Transporting ATPases/biosynthèse , Basse température , Poissons/physiologie , Protéines du muscle/biosynthèse , Protéolipides/biosynthèse , Réticulum sarcoplasmique , Danio zébré/génétique
3.
Article de Anglais | MEDLINE | ID: mdl-19755169

RÉSUMÉ

Ryanodine receptors (RyRs) are large homotetrameric protein complexes that mediate the release of intracellular stores of calcium. Mammals possess three gene copies, RyR1, RyR2, and RyR3 that are expressed in a variety of tissue types. Teleost fish express RyR1a and RyR1b genes that are expressed in slow twitch skeletal muscle and fast twitch skeletal muscles respectively. Here we report the results of a survey of the genome of bichir (Polypterus ornatipinnis), considered the most basal ray-finned fish, for its RyR genes. The bichir genome encodes four RyR genes, RyR1a, RyR1b, RyR2, and RyR3 that phylogenetically cluster with their vertebrate orthologs. Quantitative real time PCR shows fibre type-specific expression of the RyR1a and RyR1b genes. The RyR3 gene, however, is down regulated in bichir in contrast to derived teleosts including zebrafish in which the RyR1 and RyR3 genes are co-expressed at equivalent levels.


Sujet(s)
Poissons/génétique , Régulation de l'expression des gènes , Canal de libération du calcium du récepteur à la ryanodine/génétique , Protéines de poisson-zèbre/génétique , Danio zébré/génétique , Séquence d'acides aminés , Animaux , Évolution moléculaire , Couplage excitation-contraction , Poissons/physiologie , Humains , Souris , Données de séquences moléculaires , Phylogenèse , Canal de libération du calcium du récepteur à la ryanodine/composition chimique , Danio zébré/physiologie , Protéines de poisson-zèbre/composition chimique
4.
Mol Phylogenet Evol ; 29(1): 176-84, 2003 Oct.
Article de Anglais | MEDLINE | ID: mdl-12967618

RÉSUMÉ

Partial sequences of 16S and 12S mitochondrial ribosomal DNA were used to examine the phylogenetic relationships of the primarily eastern Pacific genus Paralabrax (Perciformes: Serranidae) and allied taxa. Paralabrax is considered a basal serranine, which is itself considered the basal subfamily in the Serranidae. Multiple serranines reported closely related to Paralabrax from the genera Serranus, Hypoplectrus, Cratinus, and Centropristis were used as outgroups. Species from the remaining two subfamilies, Epinephilinae and Anthiinae, of the Serranidae were also used in the analyses. The tree of the Serranidae was rooted with the families Polyprionidae and Priacanthidae. Paralabrax, the Serranidae, and the Serraninae were monophyletic in this study. Serranus was found to be paraphyletic. Centropristis, formerly considered the sister taxon to Paralabrax, was not closely related in these analyses. Cratinus agassizii, a monotypic genus from the eastern Pacific, was found to be the sister taxon to Paralabrax. There is greater resolution for intergeneric and subfamily relations than interspecific relationships. A single most parsimonious tree for the interspecific relationships of Paralabrax and allied taxa is proposed. This proposed molecular phylogeny is consistent with known biogeographic processes in the eastern Pacific.


Sujet(s)
Serran/génétique , ADN mitochondrial/génétique , ADN ribosomique/génétique , Animaux , Séquence nucléotidique , Serran/classification , Évolution moléculaire , Modèles génétiques , Océan Pacifique , Phylogenèse , ARN ribosomique/génétique , ARN ribosomique 16S/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE